医学统计学等级资料的秩和检验

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

等级资料的秩和检验易洪刚DepartmentofEpidemiology&Biostatistics,SchoolofPublicHealthNanjingMedicalUniversityRankSumTestofRankedData资料的分类数值变量资料分类资料二分类多分类无序多分类有序多分类(等级资料)Biostatistics2内容提要:1医学研究中的等级资料2秩次与秩和3两样本比较的秩和检验4多样本比较的秩和检验5配对设计的秩和检验6配伍组比较的秩和检验7秩和检验的正确应用Biostatistics31医学研究中的等级资料疗效:痊愈、显效、有效、无效、恶化化验结果:-、、+、++体格发育:下等、中下、中等、中上、上等心功能分级:I、II、III文化程度:小学、中学、大学、研究生营养水平:差、一般、好Biostatistics4等级资料的特点既非呈连续分布的定量资料,也非仅按性质归属于独立的若干类的定性资料;比“定量”粗,而比一般的“定性”细;等级间既非等距,亦不能度量。Biostatistics52秩次与秩和Wilconxon在1945年首先提出了比较两个总体分布函数的秩和检验。秩和检验以及其它的秩检验法,都是建立在秩及秩统计量基础上的非参数方法。秩次(rank),秩统计量是指全部观察值按某种顺序排列的位序;秩和(ranksum)同组秩次之和。Biostatistics6例1编秩A组:-、、+、+、+、++B组:+、++、++、++、+++、+++A:-+++++B:+++++++++++++123457689101112124.54.54.58.54.58.58.58.51112124.54.54.574.589101112124.54.54.58.54.58.58.58.511.511.5尿白细胞:秩次相同(tie)取平均秩次!!Biostatistics7秩和A组:-、、+、+、+、++秩和:124.54.54.58.5TA=25B组:+、++、++、++、+++、+++秩和:4.58.58.58.511.511.5TB=53TA+TB=N(N+1)/2=78Biostatistics8秩次:在一定程度上反映了等级的高低;秩和:在一定程度上反映了等级的分布位置。对等级的分析,转化为对秩次的分析。秩和检验就是通过秩次的排列求出秩和,进行假设检验。2秩次与秩和Biostatistics9GraphicalDemonstrationWhyusethesumofrankstotestlocations?Sumofranks=37Sumofranks=41769213458101112假如两组等级分布相同(thenullhypothesisistrue)wewouldexpecttherankstobeevenlyspreadbetweenthesamples.Inthiscasethesumofranksforthetwosampleswillbeclosetooneanother.Twohypotheticalpopulationsandtheircorrespondingsamplesarepresented,theGREENpopulationandthePURPLEpopulation.PopulationsLetusranktheobservationsofthetwosamplestogetherBiostatistics103两样本比较的秩和检验检验假设H0:A、B两组等级分布相同;H1:A、B两组等级分布不同。=0.05。Biostatistics11DistributionoftwopopulationswhentheirlocationsaresamePopulationLocations…Thelocationofpop’n1istotheleftofthelocationofpop’n2…Thelocationofpop’n1istotherightofthelocationofpop’n2…population1population2population2population1H0:Thetwopopulationlocationsarethesame.H1:Thelocationofpopulation1isdifferentfromthelocationofpopulation23两样本比较的秩和检验Biostatistics14基本思想如果H0成立,即两组分布位置相同,则A组的实际秩和应接近理论秩和n1(N+1)/2;(B组的实际秩和应接近理论秩和n2(N+1)/2).或相差不大,差值很大的概率应很小。如果相差较大,超出了预定的界值,则可认为H0不成立。Biostatistics15A组B组和实际秩和255378理论秩和n1(N+1)/2n2(N+1)/2N(N+1)/2393978差值-14140抽样误差?如果H0成立,则理论秩和与实际秩和之差纯粹由抽样误差造成。基本思想Biostatistics16两样本秩和检验T界值n1=6,n2-n1=0双侧单侧28~500.100.0526~520.050.02524~540.020.0123~550.010.005间距222630326(12+1)/2=39(理论值)Biostatistics17检验结果如果H0成立,则按0.05水准,A组秩和之界值为26~52。现A组的实际秩和为25,在界值之外,故拒绝H0,接受H1,认为两组的分布位置不同。昆明治疗癫痫病医院昆明治疗癫痫病医院昆明治疗癫痫病医院昆明癫痫病治疗秩和检验的结论判断A组的实际秩在界值之外,(小于或等于下界,大于或等于上界)则拒绝H0,接受H1。A组的实际秩在界值之内,(大于下界且小于上界)则不拒绝H0。Biostatistics19例题【例】某实验室观察在缺氧条件下猫和兔的生存时间,结果见表,试检验在缺氧条件下猫和兔的生存时间有无差别?Biostatistics20表缺氧条件下猫和兔的生存时间猫兔生存时间(min)秩次生存时间(min)秩次259.51413413152441516346161744617195481821649192175020238259.5281130123514n1=8T1=127.5n2=12T2=82.5例题Biostatistics21检验假设H0:猫和兔在缺氧条件下生存时间总体分布相同;H1:猫和兔在缺氧条件下生存时间总体分布不同。=0.05。检验统计量T值n1=8,n2=12,检验统计量T=127.5确定P值和作出推断结论查附表10得T界值是58~110。则双侧P0.05,按=0.05水准,拒绝H0,接受H1,差异有统计学意义,故可认为在缺氧条件下猫的生存时间较兔长。例题Biostatistics22例8.2用复方猪胆胶囊治疗老年性慢性支气管炎患者403例,疗效见表8.1第(1)~(3)栏。问该药对此两型支气管炎疗效是否相同?例题(page89)Biostatistics23表8.1复方猪胆胶囊治疗两型老年性慢性支气管炎疗效比较人数疗效喘息型单纯型合计(1)(2)(3)(4)控制236083显效8398181好转6551116无效111223合计n1=182n2=221403例题(page90)Biostatistics24表8.1复方猪胆胶囊治疗两型老年性慢性支气管炎疗效比较人数秩和疗效喘息型单纯型合计秩次范围平均秩次单纯型喘息型(1)(2)(3)(4)(5)(6)(7)(8)治愈2360831~83429662520显效839818184~2641741444217052好转6551116265~380322.520962.516447.5无效111223381~40339243124704合计n1=182n2=221403T1=40682.5T2=40723.5例题(page90)Biostatistics25建立检验假设H0:两型老慢支疗效分布相同;H1:两型老慢支疗效分布不同;=0.05。检验统计量n1=182,n2=221,检验统计量T=40682.5。例题(page90)Biostatistics26样本含量较大时,用u检验12/)1(5.02/)1(211NnnNnTu3jj3(tt)C1NN其中:CuuC相同秩次较多时需要校正Biostatistics27112Tn(N1)/20.5unn(N1)/1240682.5182(4031)/20.5(182)(221)(4031)/123.36693jj333333(tt)c1NN8383181181116116232314034030.876601.05961.38766.0/3669.3uCuuc确定P值和作出推断结论P0.01,按=0.05水准,拒绝H0,接受H1,差异有统计学意义。可认为复方猪胆胶囊治疗老年性慢性支气管炎喘息型与单纯型的疗效有差别。例题(page90)Biostatistics294多组比较的秩和检验Kruskal-Wallis法先对所有数据编秩,求各组秩和;计算H统计量;查H界值表,或用近似2检验,计算P值;界定P值,作出结论。Biostatistics30【例】某医生在研究再生障碍性贫血时,测得不同程度再生障碍性贫血患者血清中可溶性CD8抗原水平(U/ml),问不同程度再生障碍性贫血患者血清中可溶性CD8抗原水平有无差别?例题Biostatistics31表不同程度再障患者血清中CD8抗原水平(U/ml)正常组轻度组重度组(1)(3)(5)424485625155563198585653141620712141712762318753843382758849408845896620896901例题(假设不满足参数检验的要求)Biostatistics32表不同程度再障患者血清中CD8抗原水平(U/ml)正常组秩次轻度组秩次重度组秩次(1)(2)(3)(4)(5)(6)42144895621151255510631159835851265316141462013.571217.5141571217.576221318675319843223827758208492440888452389625.562013.589625.590127Ri49.5149.5179ni999例题Biostatistics33多组等级比较的检验假设建立检验假设H0:各组总体的等级分布相同;H1:各组总体的等级分布不同或不全相同。=0.05。)1(3)1(122NnRNNHii计算检验统计量H值Biostatistics34250.16)127(3)91795.1495.49()127(2712222HH近似服从=k1的2分布。多组等级比较的检验假设Biostatistics35确定P值和作出推断结论本例k=3,查附表12,得P0.001。按=0.05水准拒绝H0,接受H1,差异有统计学意义,可认为不同程度再生障碍性贫血患者血清中可溶性CD8抗原水平有差别。多组等级比较的检验假设Biostatistics36H的校正(page91公式8.4请更正)当有相同秩次时,H需校正:331CjjHH/CC(tt)/[NN)]Biostatistics37例8.3某医院用三种复方小叶枇杷治疗老年性慢性支气管炎,数据见表8.2第(1)~(4)栏,试比较其疗效有无差异。例题(page91

1 / 72
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功