-1-重庆理工大学考试试卷2013~2014学年第一学期年级学号姓名考试科目高等数学[(1)经管]A卷共3页··································································密························封························线········································································学生答题不得超过此线1、设函数xaxxfsin,则A.xf为奇函数B.xf为偶函数C.xf为非奇非偶函数D.xf的奇偶性与参数a有关2、设函数21fxxx,则)(xfA.)1(xxB.)1(xxC.)2(1xxD.)2(1xx3、极限22x3x9limx2x3=A.0B.23C.32D.924、若0x时函数xf为2x的高阶无穷小量,则20()limxfxx=A.0B.12C.1D.∞5、方程0123xx在下列区间()内有根A.[-4,-1]B.[-2,0]C.[0,2]D.[1,5]6、设函数xf满足21,01ff,则0(1)limxfxx=A.0B.1C.2D.不存在7、设函数xf在区间[a,b]上可导,且0xf,0bf,则在[a,b]上xfA.恒大于零B.恒小于零C.恒等于零D.有正有负8、设函数2931fxxxx,则高阶导数(12)fx=A.12!B.11!C.10!D.09、设极限10lim(12)axxxe,则常数aA.2B.21C.12D.210、设函数xf连续,()()daxxtftt,则()x=A.xxfB.xafC.xxfD.xaf题号一二三四总分总分人分数得分一、单项选择题(请将答案填入下表)(共10小题,每小题2分,共20分)题号12345678910评卷人答案-2-重庆理工大学考试试卷2012~2013学年第一学期年级学号姓名考试科目高等数学[(1)经管]A卷共3页·····································································密························封························线·····································································学生答题不得超过此线二、填空题(共8空,每空2分,共16分)1、函数xf2xx5ln的定义域是___________。2、极限0sinlim(1)ln(1)xxxx__________。3、设函数xfcos,02(1),0xxxaaxxx,xf在0x处连续,则a。4、若3d3exfxxC,则xf。5、函数43413fxxx在区间[-1,1]上的最小值为。6、某产品产量为q时总成本120011002qqC,则1200q时的边际成本为。7、设函数223xeyx,则微分dy。8、设函数xf在(,)上连续,且对任意的x,有30542xdtttfx,则xf________。三、计算题(共9小题,每小题6分,共54分)1、求极限:3113lim().11xxx---2、求极限:1ln(2)limcos2xxx3、设函数xeyarcsin,求dy4、求曲线2exyx的凹凸区间及拐点5、求函数xxey32的单调区间6、计算定积分11x0edx得分评卷人得分评卷人-3-重庆理工大学考试试卷2012~2013学年第一学期年级学号姓名考试科目高等数学[(1)经管]A卷共3页·····································································密························封························线·····································································学生答题不得超过此线7、求定积分dxxx2032sincos8、设函数xf可导,且xfcos2cos4cosxx,20f,求xf.9、设函数21,01()1,0xxfxxx,计算定积分11()dfxx得分四、证明题(共2小题,每小题5分,共10分)评卷人1、证明:当0x时,3arctan3xxx2、已知xf在aa,上连续,且xfxf,证明:0)(dxxfaa