2第二章-用网络等效简化电路分析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章用网络等效简化电路分析当电路规模比较大时,建立和求解电路方程都比较困难,此时,可以利用网络等效的概念将电路规模减小,从而简化电路分析。当我们对某个负载电阻或电阻单口网络的电压,电流和电功率感兴趣,如图2-1(a)所示,可以用单口网络的等效电路来代替单口网络,得到图2-1(b)和(c)所示的电阻分压电路和分流电路,从而简化电路的分析。图2-1本章介绍利用网络等效概念简化电路分析的一些方法,先讨论电阻分压电路和分流电路,再介绍线性电阻单口网络的电压电流关系及其等效电路,然后讨论电阻星形联结联接和三角形联结的等效变换,最后讨论简单非线性电阻电路的分析。§2-1电阻分压电路和分流电路本节通过对常用的电阻串联分压电路和电阻并联分流电路的讨论,导出电阻串联的分压公式和电阻并联的分流公式,并举例说明它的使用。一、电阻分压电路对图2-2所示两个电阻串联的分压电路进行分析,得出一些有用的公式。图2-2对图2-2所示电阻串联分压电路列出KCL方程21iii列出KVL方程21uuu列出电路元件的VCR方程222111SiRuiRuuu将电阻元件的欧姆定律代入KVL方程,得到电流i的计算公式21S21221121S)(RRuiiRRiRiRuuu=将它代入电阻元件的欧姆定律,得到计算电阻电压的分压公式S2122S2111uRRRuuRRRu一般来说,n个电阻串联时,第k个电阻上电压可按以下分压公式计算1)(2S1-uRRunkkkk电阻串联分压公式表示某个电阻上的电压与总电压之间的关系。分压公式说明某个电阻电压与其电阻值成正比例,电阻增加时其电压也增大。值得注意的是电阻串联分压公式是在图2-2电路所示的电压参考方向得到的,与电流参考方向的选择无关,当公式中涉及的电压变量uk或uS的参考方向发生变化时,公式中将出现一个负号。例2-1电路如图2-3所示,求R=0,4,12,∞时的电压Uab。图2-3解:利用电阻串联分压公式可以求得电压Uac和UbcV81212V6V8626bcacRUU将电阻R之值代入上式,求得电压Ubc后,再用KVL求得Uab,计算结果如下所示:R0412∞Uac6V6V6V6VUbc8V6V4V0VUab=Uac-Ubc-2V02V6V由计算结果可见,随着电阻R的增加,电压Ubc逐渐减小,电压Uab由负变正,说明电压Uab的实际方向可以随着电阻R的变化而改变。下面讨论一个实际电源向一个可变电阻负载供电时,负载电流i和电压u的变化规律。画出电源向一个可变电阻负载RL供电的电路模型,如图2-5所示,图中的电阻Ro表示电源的内阻。图2-5图2-5列出负载电流i的公式scoLscoLoSLoS1111ikRRiRRRuRRui==其中k=RL/Ro表示负载电阻与电源内阻之比,isc=us/Ro表示负载短路时的电流。用分压公式写出负载电压u的公式其中k=RL/Ro,uoc=us表示负载开路时的电压。11OCOCOLOLSLOLukkuRRRRuRRRu=负载电阻吸收的功率)1(SCOC2iukkuip系数k=RL/Ro取不同数值时计算出一系列电流电压和功率的相对值,如下表所示:k=RL/Ro00.20.40.60.81.02.03.04.05.0∞i/isc10.8330.7140.6250.5550.50.3330.250.20.1670u/uoc00.1670.2860.3750.4440.50.6670.750.80.8331p/pimax00.5560.8160.9380.98810.8890.750.640.5560根据以上数据可以画出电压、电流和功率随负载电阻变化的曲线,如图2-6所示。由此可见:1.当负载电阻由零逐渐增大时,负载电流由最大值isc=us/Ro逐渐到零,其中当负载电阻与电源内阻相等时,电流等于最大值的一半。2.当负载电阻由零逐渐增大时,负载电压由零逐渐增加到最大值uoc=us,其中当负载电阻与电源内阻相等时,电压等于最大值的一半。3.当负载电阻与电源内阻相等时,电流等于最大值的一半,电压等于最大值的一半,负载电阻吸收的功率达到最大值,且pmax=0.25uocisc。负载电阻变化时电流呈现的非线性变化规律,可以从普通万用表的电阻刻度上看到。万用表电阻挡的电路模型是一个电压源和一个电阻的串联。当我们用万用表电阻挡测量未知电阻时,应先将万用表短路,并调整调零电位器使仪表指针偏转到0处,此时表头的电流达到最大值,仪表指针满偏转。当去掉短路线时,万用表指针应该回到∞处,此时表头的电流为零。图2-6当万用表接上被测电阻时,随着电阻值的变化,表头的电流会发生相应的变化,指针偏转到相应位置,根据表面的刻度就可以直接读出被测电阻器的电阻值。细心的读者可以注意到一种特殊情况,当被测电阻值刚好等于万用表电阻挡的内阻时,电流是满偏转电流的一半,指针停留在中间位置。反过来,根据万用表电阻挡刻度中间的读数就可以知道其内阻的数值,例如500型万用表指针停留在中间位置时的读数是10,当使用×1k电阻挡时的内阻是10k,使用×100电阻挡时的内阻是1k,以此类推。二、电阻分流电路图2-7表示一个电流源向两个并联电阻供电的电路,下面对这个电阻并联电路进行分析,得出一些有用的公式。对图2-7所示分流电路列出KVL方程21uuu列出KCL方程21iii图2-7列出VCR方程222111uGiuGiiiS将电阻元件的欧姆定律代入KCL方程,得到电压u的计算公式21S21221121)(GGiuuGGuGuGiii=将它代入电阻元件的欧姆定律,得到计算电阻电流的分流公式S2122S2111iGGGiiGGGi用电阻参数表示的两个并联电阻的分流公式为S2112S2121iRRRiiRRRi一般来说,n个电阻并联时,第k个电阻中电流可按以下分流公式计算2)(2S1-iGGinkkkk图2-7分流公式表示某个并联电阻中电流与总电流之间的关系。分流公式说明电阻电流与其电导值成正比例,电导增加时其电流也增大。值得注意的是电阻并联分流公式是在图2-7电路所示的电流参考方向得到的,与电压参考方向的选择无关,当公式中涉及的电流变量iS或ik的参考方向发生变化时,公式中将出现一个负号。2)(2S1-iGGinkkkk§2-2电阻单口网络单口网络:只有两个端钮与其它电路相连接的网络,称为二端网络。当强调二端网络的端口特性,而不关心网络内部的情况时,称二端网络为单口网络,简称为单口(One-port)。电阻单口网络的特性由端口电压电流关系(简称为VCR)来表征(它是u-i平面上的一条曲线)。N1N2等效VCR相同等效单口网络:当两个单口网络的VCR关系完全相同时,称这两个单口是互相等效的。单口的等效电路:根据单口VCR方程得到的电路,称为单口的等效电路[如图(b)和图(c)所示]。单口网络与其等效电路的端口特性完全相同。利用单口网络的等效来简化电路分析:将电路中的某些单口网络用其等效电路代替时,不会影响电路其余部分的支路电压和电流,但由于电路规模的减小,则可以简化电路的分析和计算。图2-1一、线性电阻的串联和并联1.线性电阻的串联两个二端电阻首尾相连,各电阻流过同一电流的连接方式,称为电阻的串联。图(a)表示n个线性电阻串联形成的单口网络。图2-10用2b方程求得端口的VCR方程为RiiRRRRiRiRiRiRuuuuunnnn)(321332211321其中nkkRiuR1上式表明n个线性电阻串联的单口网络,就端口特性而言,等效于一个线性二端电阻,其电阻值由上式确定。2.线性电阻的并联两个二端电阻首尾分别相连,各电阻处于同一电压下的连接方式,称为电阻的并联。图(a)表示n个线性电阻的并联。图2-11求得端口的VCR方程为其中上式表明n个线性电阻并联的单口网络,就端口特性而言,等效于一个线性二端电阻,其电导值由上式确定。GuuGGGGuGuGuGuGiiiiinnnn)(321332211321nkkGuiG1两个线性电阻并联单口的等效电阻值,也可用以下公式计算2121RRRRR3.线性电阻的串并联由若干个线性电阻的串联和并联所形成的单口网络,就端口特性而言,等效于一个线性二端电阻,其等效电阻值可以根据具体电路,多次利用电阻串联和并联单口网络的等效电阻公式(2-3)和(2-4)计算出来。例2-4电路如图2-12(a)所示。已知R1=6,R2=15,R3=R4=5。试求ab两端和cd两端的等效电阻。为求Rab,在ab两端外加电压源,根据各电阻中的电流电压是否相同来判断电阻的串联或并联。图2-125510156612104334RRR610151015342342234RRRRR12662341abRRR125515)55(156)(4324321abRRRRRRRR显然,cd两点间的等效电阻为45155)515(5)(423423cdRRRRRRR1555二、独立电源的串联和并联)62(1SSnkkuu根据独立电源的VCR方程和KCL、KVL方程可得到以下公式:1.n个独立电压源的串联单口网络,如图2-13(a)所示,就端口特性而言,等效于一个独立电压源,其电压等于各电压源电压的代数和图2-13其中与uS参考方向相同的电压源uSk取正号,相反则取负号。)62(1SSnkkuu图2-132.n个独立电流源的并联单口网络,如图2-14(a)所示,就端口特性而言,等效于一独立电流源,其电流等于各电流源电流的代数和)72(1SSnkkii与iS参考方向相同的电流源iSk取正号,相反则取负号。图2-14就电路模型而言,不要将两个电压源并联;也不要将两个电流源串联,否则会导致电路没有惟一解。就实际电源而言,两个电动势不同的电池可以并联。此时,电流在内阻上的压降将保持电池的端电压相等,不会违反KVL方程。实验室常用的晶体管直流稳压电源的内阻非常小,当两个输出电压不同的直流稳压电源并联时,过大的电流将可能超过电源的正常工作范围,以致损坏电源设备。例2-5图2-15(a)电路中。已知uS1=10V,uS2=20V,uS3=5V,R1=2,R2=4,R3=6和RL=3。求电阻RL的电流和电压。图2-15将三个串联的电阻等效为一个电阻,其电阻为12624312RRRR由图(b)电路可求得电阻RL的电流和电压分别为:V3A13A1312V15LLSiRuRRui解:为求电阻RL的电压和电流,可将三个串联的电压源等效为一个电压源,其电压为V15V5V10V20S3S1S2Suuuu例2-6电路如图2-16(a)所示。已知iS1=10A,iS2=5A,iS3=1A,G1=1S,G2=2S和G3=3S,求电流i1和i3。图2-16解:为求电流i1和i3,可将三个并联的电流源等效为一个电流源,其电流为A6A1A5A10S3S2S1Siiii得到图(b)所示电路,用分流公式求得:A3A63213A1A63211S32133S32111iGGGGiiGGGGi三、含独立电源的电阻单口网络一般来说,由一些独立电源和一些线性电阻元件组成的线性电阻单口网络,就端口特性而言,可以等效为一个线性电阻和电压源的串联,或者等效为一个线性电阻和电流源的并联。可以通过计算端口VCR方程,得到相应的等效电路。例2-7图2-17(a)单口网络中。已知uS=6V,iS=2A,R1=2,R2=3。求单口网络的VCR方程,并画出单口网络的等效电路。图2-17解:在端口外加电流源

1 / 62
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功