12010年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2010•安徽)i是虚数单位,=()A.﹣iB.iC.D.【考点】复数代数形式的乘除运算.菁优网版权所有【分析】通常分子与分母同时乘以分母的共轭复数,然后利用复数的代数运算,结合i2=﹣1得结论.【解答】解:===+,故选B.【点评】本题考查复数的分式形式的化简问题,主要是乘除运算,是基础题.2.(5分)(2010•安徽)若集合A={x|x≥},则∁RA=()A.(﹣∞,0]∪(,+∞)B.(,+∞)C.(﹣∞,0]∪[,+∞)D.[,+∞)【考点】补集及其运算;对数函数的单调性与特殊点.菁优网版权所有【专题】计算题.【分析】欲求A的补集,必须先求集合A,利用对数的单调性求集合A,然后得结论,【解答】解:∵x≥,∴x≥,∴0<x,∴∁RA=(﹣∞,0]∪(,+∞).故选A.【点评】本题主要考查补集及其运算,这里要注意对数中真数的范围,否则容易出错.3.(5分)(2010•安徽)设向量,则下列结论中正确的是()A.B.C.与垂直D.【考点】向量的模;数量积判断两个平面向量的垂直关系.菁优网版权所有2【专题】计算题.【分析】本题考查的知识点是向量的模,及用数量积判断两个平面向量的垂直关系,由,我们易求出向量的模,结合平面向量的数量坐标运算,对四个答案逐一进行判断,即可得到答案.【解答】解:∵,∴=1,=,故不正确,即A错误∵•=≠,故B错误;∵﹣=(,﹣),∴(﹣)•=0,∴与垂直,故C正确;∵,易得不成立,故D错误.故选C【点评】判断两个向量的关系(平行或垂直)或是已知两个向量的关系求未知参数的值,要熟练掌握向量平行(共线)及垂直的坐标运算法则,即“两个向量若平行,交叉相乘差为0,两个向量若垂直,对应相乘和为0”.4.(5分)(2010•安徽)若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(3)﹣f(4)=()A.1B.2C.﹣2D.﹣1【考点】函数奇偶性的性质;函数的周期性.菁优网版权所有【专题】计算题.【分析】利用函数奇偶性以及周期性,将3或4的函数值问题转化为1或2的函数值问题求解即可.【解答】解:∵若f(x)是R上周期为5的奇函数∴f(﹣x)=﹣f(x),f(x+5)=f(x),∴f(3)=f(﹣2)=﹣f(2)=﹣2,f(4)=f(﹣1)=﹣f(1)=﹣1,∴f(3)﹣f(4)=﹣2﹣(﹣1)=﹣1.故选D.【点评】本题考查函数奇偶性的应用,奇(偶)函数的定义:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(﹣x)=﹣f(x))(或f(﹣x)=f(x)),那么函数f(x)是奇(偶)函数.5.(5分)(2010•安徽)双曲线方程为x2﹣2y2=1,则它的右焦点坐标为()A.B.C.D.【考点】双曲线的简单性质.菁优网版权所有【专题】计算题.【分析】把双曲线方程化为标准方程可分别求得a和b,进而根据c=求得c,焦点坐标可得.3【解答】解:双曲线的,,,∴右焦点为.故选C【点评】本题考查双曲线的焦点,把双曲线方程先转化为标准方程,然后利用c2=a2+b2求出c即可得出交点坐标.但因方程不是标准形式,很多学生会误认为b2=1或b2=2,从而得出错误结论.6.(5分)(2010•安徽)设abc>0,二次函数f(x)=ax2+bx+c的图象可能是()A.B.C.D.【考点】函数的图象.菁优网版权所有【专题】综合题;分类讨论.【分析】当a>0时,二次函数开口向上,判断C、D中c的符号,再确定b的符号,判断C、D的正误,当a<0时,同样的方法判断A、B的正误.【解答】解:当a>0时,因为abc>0,所以b、c同号,由(C)(D)两图中可知c<0,故b<0,∴,即函数对称轴在y轴右侧,C不正确,选项(D)符合题意.显然a<0时,开口向下,因为abc>0,所以b、c异号,对于A、由图象可知c<0,则b>0,对称轴,A不正确;对于B,c>0,对称轴,B选项不正确.故选D.【点评】根据二次函数图象开口向上或向下,分a>0或a<0两种情况分类考虑.另外还要注意c值是抛物线与y轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置等.是常考题.7.(5分)(2010•安徽)设曲线C的参数方程为(θ为参数),直线l的方程为x﹣3y+2=0,则曲线C上到直线l距离为的点的个数为()A.1B.2C.3D.4【考点】圆的参数方程.菁优网版权所有【专题】计算题;压轴题.4【分析】由题意将圆C和直线l先化为一般方程坐标,然后再计算曲线C上到直线l距离为的点的个数.【解答】解:化曲线C的参数方程为普通方程:(x﹣2)2+(y+1)2=9,圆心(2,﹣1)到直线x﹣3y+2=0的距离,直线和圆相交,过圆心和l平行的直线和圆的2个交点符合要求,又,在直线l的另外一侧没有圆上的点符合要求,故选B.【点评】解决这类问题首先把曲线C的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系,这就是曲线C上到直线l距离为,然后再判断知,进而得出结论.8.(5分)(2010•安徽)一个几何体的三视图如图,该几何体的表面积是()A.372B.360C.292D.280【考点】由三视图求面积、体积.菁优网版权所有【专题】计算题;压轴题.【分析】三视图很容易知道是两个长方体的组合体,得出各个棱的长度.即可求出组合体的表面积.【解答】解:该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和.S=2(10×8+10×2+8×2)+2(6×8+8×2)=360.故选B.【点评】把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和.59.(5分)(2010•安徽)动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是()A.[0,1]B.[1,7]C.[7,12]D.[0,1]和[7,12]【考点】函数单调性的判断与证明.菁优网版权所有【专题】压轴题.【分析】由动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,可知与三角函数的定义类似,由12秒旋转一周能求每秒钟所转的弧度,画出单位圆,很容易看出,当t在[0,12]变化时,点A的纵坐标y关于t(单位:秒)的函数的单调性的变化,从而得单调递增区间.【解答】解:设动点A与x轴正方向夹角为α,则t=0时,每秒钟旋转,在t∈[0,1]上,在[7,12]上,动点A的纵坐标y关于t都是单调递增的.故选D.【点评】本题主要考查通过观察函数的图象确定函数单调性的问题.10.(5分)(2010•安徽)设{an}是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,则下列等式中恒成立的是()A.X+Z=2YB.Y(Y﹣X)=Z(Z﹣X)C.Y2=XZD.Y(Y﹣X)=X(Z﹣X)【考点】等比数列.菁优网版权所有【专题】压轴题.【分析】取一个具体的等比数列验证即可.【解答】解:取等比数列1,2,4,令n=1得X=1,Y=3,Z=7代入验算,只有选项D满足.故选D【点评】对于含有较多字母的客观题,可以取满足条件的数字代替字母,代入验证,若能排除3个选项,剩下唯一正确的就一定正确;若不能完全排除,可以取其他数字验证继续排除.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2010•安徽)命题“对任何x∈R,使得|x﹣2|+|x﹣4|>3”的否定是存在x∈R,使得|x﹣2|+|x﹣4|≤3.【考点】命题的否定.菁优网版权所有【专题】阅读型.【分析】全称命题的否定是特称命题,只须将全称量词“任何”改为存在量词“存在”,并同时把“|x﹣2|+|x﹣4|>3”否定.【解答】解:全称命题的否定是特称命题,∴命题“对任何x∈R,使得|x﹣2|+|x﹣4|>3”的否定是:存在x∈R,使得|x﹣2|+|x﹣4|≤3.故填:存在x∈R,使得|x﹣2|+|x﹣4|≤3.【点评】本题主要考查了命题的否定,属于基础题之列.这类问题常见错误是,没有把全称量词改为存在量词,或者对于“>“的否定改成了”<“,而不是“≤”.612.(5分)(2010•安徽)(﹣)6展开式中,x3的系数等于15.【考点】二项式系数的性质.菁优网版权所有【专题】计算题.【分析】根据题意,易得其二项展开式,分析可得,当r=2时,有C62•()4•(﹣)2=15x3,即可得答案.【解答】解:根据题意,易得其二项展开式的通项为Tr+1=C6r•()6﹣r•(﹣)r,当r=2时,有C62•()4•(﹣)2=15x3,则x3的系数等于15,故答案为15.【点评】本题考查二项式定理的应用,注意二项式的展开式的形式,特别要区分某一项的系数与二项式系数.13.(5分)(2010•安徽)设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为8,则a+b的最小值为4.【考点】简单线性规划的应用.菁优网版权所有【专题】压轴题.【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件,画出满足约束条件的可行域,再根据目标函数z=abx+y(a>0,b>0)的最大值为8,求出a,b的关系式,再利用基本不等式求出a+b的最小值.【解答】解:满足约束条件的区域是一个四边形,如下图4个顶点是(0,0),(0,2),(,0),(1,4),由图易得目标函数在(1,4)取最大值8,即8=ab+4,∴ab=4,∴a+b≥2=4,在a=b=2时是等号成立,∴a+b的最小值为4.故答案为:47【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.14.(5分)(2010•安徽)如图所示,程序框图(算法流程图)的输出值x为12【考点】程序框图.菁优网版权所有【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的x的值,当x=12时满足条件x>8,退出循环,输出x的值为12.【解答】解:模拟执行程序框图,可得x=1满足条件x是奇数,x=2不满足条件x是奇数,x=4,不满足条件x>8,x=5满足条件x是奇数,x=6,不满足条件x>8,x=7满足条件x是奇数,x=8,不满足条件x>8,x=9满足条件x是奇数,x=10,不满足条件x是奇数,x=12,满足条件x>8,退出循环,输出x的值为12.【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的x的值是解题的关键,属于基础题.815.(5分)(2010•安徽)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是②④(写出所有正确结论的编号).①;②;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;⑤P(B)的值不能确定,因为它与A1,A2,A3中哪一个发生有关.【考点】互斥事件的概率加法公式.菁优网版权所有【专题】压轴题.【分析】本题是概率的综合问题,掌握基本概念,及条件概率的基本运算是解决问题的关键.本题在A1,A2,A3是两两互斥的事件,把事件B的概率进行转化P(B)=P(B|•A1)+P(B•A2)+P(B•A3),可知事件B的概率是确定的.【解答】解:易见A1,A2,A3是两两互斥的事件,.故答案为:②④【点评】概率的综合问题,需要对基本概念和基本运算能够熟练掌握.三、解答题(共6小题,满分75分)16.(12分)(