第三章--固定化酶及反应动力学

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

北京理工大学•生命学院孙立权slq@bit.edu.cn第三章固定化酶催化反应过程动力学概述固定化后酶性质变化及动力学影响因素外扩散限制效应内扩散限制效应扩散影响下的表观动力学参数内容酶应用过程中的一些不足酶的稳定性较差:除了某些耐高温的酶,如α-淀粉酶、Taq酶等;和胃蛋白酶等可以耐受较低的pH条件以外,大多数的酶在高温、强酸、强碱和重金属离子等外界因素影响下,都容易变性失活。酶的一次性使用:酶一般都是在溶液中与底物反应,这样酶在反应系统中,与底物和产物混在一起,反应结束后,即使酶仍有很高的活力,也难于回收利用。这种一次性使用酶的方式,不仅使生产成本提高,而且难于连续化生产。产物的分离纯化较困难:酶反应后成为杂质与产物混在一起,无疑给产物的进一步的分离纯化带来一定的困难。固定化技术什么是固定化酶?水溶性酶水不溶性载体水不溶性酶(固定化酶)固定化技术01概述固定化:将酶通过物理或化学方法固定在载体上或限制在一定空间内。固定化酶(immobilizedenzyme)亦称固相酶或水不溶酶。是用物理的或化学的方法使酶装变为在一定的空间内其运动受到完全约束,或受到局部约束的一种不溶于水,但仍具有活性的酶。能以固相状态作用于底物进行催化反应。水不溶性大分子载体结合或把酶包埋在水不溶性凝胶或半透膜的微囊体中制成的。固定化酶的研究始于1910年,正式研究于20世纪60年代、70年代已在全世界普遍开展。1953年德国的Grubhofer和Schleith采用聚氨基苯乙烯树脂为载体与羧肽酶、淀粉酶、胃蛋白酶、核糖核酸酶等结合,制成固定化酶。60年代后期,固定化技术迅速发展起来。1969年,日本的千烟一郎首次在工业上生产应用固定化氨基酰化酶从DL-氨基酸连续生产L-氨基酸,实现了酶应用史上的一大变革。在1971年召开的第一次国际酶工程学术会议上,确定固定化酶的统一英文名称为Immobilizedenzyme。随着固定化技术的发展,出现固定化菌体。1973年,日本首次在工业上应用固定化大肠杆菌菌体中的天门冬氨酸酶,由反丁烯二酸连续生产L-天门冬氨酸。在固定化酶和固定化菌体的基础上,70年代后期出现了固定化细胞技术。1976年,法国首次用固定化酵母细胞生产啤酒和酒精,1978年日本用固定化枯草杆菌生产淀粉酶,开始了用固定化细胞生产酶的先例。1982年,日本首次研究用固定化原生质体生产谷氨酸,取得进展。固定化原生质体由于解除了细胞壁的障碍,更有利于胞内物质的分泌,这为胞内酶生产技术路线的变革提供了新的方向。与游离酶相比,固定化酶在保持其高效专一及温和的酶催化反应特性的同时,又克服了游离酶的不足之处,呈现贮存稳定性高、分离回收容易、可多次重复使用、操作连续可控、工艺简便等一系列优点。固定化酶不仅在化学、生物学及生物工程、医学及生命科学等学科领域的研究异常活跃,得到迅速发展和广泛的应用,而且因为具有节省资源与能源、减少或防治污染的生态环境效应而符合可持续发展的战略要求。为什么固定化?易从反应系统分离,简化产物纯化过程。稳定性增加,不易失活具有一定形状和机械强度,可以装填于反应器固定床反应器可连续生产,过程易控制。简化了提取工艺,增加产物收率,提高产品质量更适合多酶反应酶使用效率提高,产品成本降低存在问题(1)制备困难,活性降低(2)增加了载体成本费及固定化操作费用;(3)增大了颗粒扩散阻力,使反应速度下降。固定化细胞01概述固定化细胞将细胞限制或定位于特定空间位置的方法称为细胞固定化技术。被限制或定位于特定空间位置的细胞称为固定化细胞。特点:1.无需进行酶的分离和纯化。2.细胞本身含有多酶体系,可催化一系列反应。3.酶的辅助因子可以再生,稳定性高。4.保持酶的原始状态,酶的回收率高。5.抗污染能力强。01概述工业规模的酶固定化方法应具备的条件:(1)载体价廉、固定化费用低;(2)能反复利用,即对非一次性固定化酶,其载体要求能再生;(3)固定化收率高、制备简便、而且结合力强;(4)载体的机械强度高;(5)物理及化学性质稳定,使用于食品加工时要安全无毒.01概述固定化酶制备方法01概述吸附(载体结合)法:物理吸附(活性碳,硅胶等),离子结合(离子交换剂和离子交换树脂),共价结合。作用力增强,对酶影响加大。交联法:利用多功能试剂使酶间交联(异氰酸酯,联苯胺,形成共价键)。包埋法:包埋于高分子凝胶网格(网格型),高分子半透膜(微囊型)(医学应用多)化学偶联酶固定化间歇可溶交联包埋吸附间歇连续酶的固定化技术和固定化酶01概述活性中心:保护酶的催化作用,并使酶的活性中心的氨基酸基团固有的高级结构不受到损害,在制备固定化酶时,需要在非常严密的条件下进行。功能基团:如游离的氨基、羧基、半胱氨酸的巯基、组氨酸的咪唑基、酪氨酸的酚基、丝氨酸和苏氨酸的羟基等,当这些功能基团位于酶的活性中心时,要求不参与酶的固定化结合酶的高级结构:要避免用高温、强酸、强碱等处理,而且有机溶剂、高浓度的盐也会使酶变性、失活,因此,操作应尽量在非常温和的条件下进行。固定化酶操作的注意事项1吸附法吸附法分为物理吸附法和离子交换吸附法。(1)物理吸附法:通过氢键、疏水作用和π电子亲和力等物理作用,将酶固定于水不溶载体上.从而制成固定化酶。常用的载体有:①有机载体。纤维素、骨胶原、火棉胶及面筋、淀粉等。比如用纤维素作为吸附剂,用膨润的玻璃纸或胶棉膜吸附木瓜蛋白酶、碱性磷酸脂酶、6-磷酸葡萄糖脱氢酶。吸附后在载体表面形成单分子层,吸附蛋白能力约70mg/cm2。②无机载休。氧化铅、皂土、白土、高岭土、多孔玻璃、二氧化钛等。比如用多孔硅为载体吸附米曲酶和枯草杆菌的alpha-淀粉酶以及黑曲霉的糖化酶,在45℃进行固定化,用高浓度的底物进行连续反应。半衰期分别为14、35、60d。无机载体的吸附容量较低、而且酶容易脱落。固定化酶制备方法01概述吸附(载体结合)法:物理吸附(活性碳,硅胶等),离子结合(离子交换剂和离子交换树脂),共价结合。作用力增强,对酶影响加大。物理法固定酶的优点在于酶不参加化学反应,整体结构保持不变,酶的催化活性得到很好保留。但是,由于包埋物或半透膜具有一定的空间或立体阻碍作用,因此对一些反应不适用。(2)离子交换吸附法:这是将酶与含有离子交换基的水不溶载体相结合而达到固定化的一种方法。酶吸附较牢,在工业上颇具广泛的用途。常用的载体有阴离子交换剂,如二乙基氨基乙基(DEAE)-纤维素、混合胺类(ECTEDLA)-纤维素、四乙氨基乙基(TEAE)-纤维素、DEAE-葡聚糖凝胶、AmberliteIRA-93、410、900等。阳离子交换剂,如羧甲基(CM)—纤维素、纤维素柠檬酸盐、AmberliteCG50、IRC—50、IR—200、Dowex—50等。DEAE-Sephadex固定化氨基酰化酶:将DEAE-SephadexA25充分溶胀.用0.5mol/LNa0H和水洗涤后,加入pH7.0—7.5的米曲霉-粗酶液(水解乙酰—DL-Ala活力为25umol/m1·h)充分混合(1g湿重载体加60ml酶液)后,于低温下搅拌过夜后,吸去上清液,再用蒸馏水和0.15mol/L醋酸钠水溶液洗涤固定化酶,置4℃备用。固定化酶活力回收50-60%,水解乙酰—DL—A1a活力为600-800umol/g·h湿固定化酶。氨基酰化酶也可固定于DEAE—纤维素。此外,DEAE—纤维素吸附的α—淀粉酶、蔗糖酶已作为商品固定化酶。通过酶蛋白化学修饰来增加蛋白质分子上电荷。能有效的克服吸附法制备的固定化酶在使用过程的解吸。用水溶性乙烯—顺丁烯二酸酐共聚物共价修饰的胰蛋白酶和胰凝乳蛋白酶、可以用DEAE—纤维素和DEAE—Scphadex载体有效的固定。这种固定几乎是不可逆的吸附。此外.酶的吸附与解吸还与介质中离子强度、pH、温度、蛋白质浓度及酶和载体的特性相关。pH的变化影响到载体和酶的电荷,从而影响载体对酶的吸附。在等电点两侧(±1-2pH单位)吸附将明显减少,但也有个别例外。盐对吸附的影响较为复杂.在一些特殊事例中、盐可以促进蛋白质的吸附。这就是所谓的盐析吸附。对蛋白质吸附来说,随温度的升高吸附下降。载体的表面积、多孔性及其顶处理都影响对酶的吸附。吸附法制备固定化酶操作简单,可充分选择不同电荷、不同形状的载体,吸附过程可以同时纯化酶,固定化酶在使用过程失活后可重新活化,同时,载体可以回收再利用。但由于有些机理不十分明了,在给酶量、吸附程度与固定化酶活力回收的关系不可预见性大,同时由于吸附法制备的固定化酶易脱落,影响产物纯度和酶的操作为稳定性。共价结合法是将酶蛋白分子上官能团和载体上的反应基团通过化学价键形成不可逆的连接的方法。在温和的条件下能偶联的酶蛋白基团包括有氨基、羧基、半胱氨酸的巯基、组氨酸的咪唑基、酪氨酸的酚基、丝氨酸和苏氨酸的羟基等。常用的载体包括天然高分子(纤维素、琼脂糖、葡萄糖凝胶、胶原及其衍生物),合成高分子(聚酰胺、聚丙烯酰胺、乙烯-顺丁烯二酸酐共聚物等)和无机支持物(多孔玻璃、金属氧化物等)。共价结合法制备的固定化酶,酶和载体的连接键结合牢固,使用寿命长,但制备过程中酶直接参与化学反应,常常引起酶蛋白质的结构发生变化,导致酶活力的下降,往往需要严格控制操作条件才能获得活力较高的固定化酶。(1)酶分子和载体连接的功能基团从理论上讲,酶蛋白上可供载体结合的功能基团有以下几种:①酶蛋白N—端的M—氨基或赖氨酸残基的-氨基。②酶蛋白C-端的羧基以及Asp残基的α-羧基和Glu残基γ-羧基。③Cys残基的巯基。④Ser、Tyr、Thr残基的羟基。⑤Phe和Tyr残基的苯环。⑥His残基的咪唑基。⑦Trp残基的吲哚基。在实际中偶联最普遍的基团是:氨基、羧基以及苯环。被偶联的基团还应是酶活性的非必需基团,否则将导致酶失去活性。(2)载体的选择载体直接关系到固定化酶的性质和形成。对载体的一般要求是:①一般亲水载体在蛋白质结合量和固定化酶活力及其稳定性上都优于疏水载体。②载体结构疏松,表面积大,有一定的机械强度。③载体必须有在温和条件与酶共价结合的功能基团。④载休没有或很少有非专一性吸附。⑤载体来源容易.便便.并能反复使用。(3)偶联反应酶和载体的连接反应取决于载体上的功能基团和酶分子上的非必需侧链基团,而且是在十分温和的pH、中等离子强度和较低温的缓冲液中进行。现已有许多种偶联反应都能制备固定化酶。这些方法在实际运用中经济意义起着决定性作用,必须考虑到酶的偶联效率.固定化酶总活力,操作的简便性以及载体与试剂的成本等因素。现介绍如下:①重氮法是将带芳香族氨基的载体,先用NaNO2和稀盐酸酸处理成重氮盐衍生物,再在中性偏碱(pH8—9)条件下与酶蛋白发生偶联反应,得到固定化酶。可能与酶蛋白中Tyr的酚基,His的咪唑基生成重氮衍生物,在过量重氮盐存在下还可与酶蛋白的N—端氨基或Lys的ε氨基形成双偶氮化合物。常用载体及其反应如下:a.多糖类的芳香族氨基衍生物。我国独创的使用对-β-硫酸脂乙砜基胺(ABSE—)多糖(纤维素,葡聚糖,文联琼脂糖,交联琼脂及淀粉)属于此类载体。在碱性条件下用对—β—硫酸脂乙砜基胺话化多糖,制得的醚键连接的乙砜基苯胺衍生物,经重氮化后偶联酶:b.氮基酸共聚体。如L—Leu和对氨基—DL—苯丙氨酸共聚物:待1mol/L的L—Leu和对氨基—DL—Phe的N—羧基酐的苯溶液在少量水存在及室温下进行反应制成。共聚物与亚硝酸作用转变为重氮盐,可供酶固定用。用此法制备的固定化酶有蛋白酶、脲酶、核糖核酸酶等。c.聚丙烯酰胺衍生物。该类衍生物的商品名称为bio—Gel或Enzacry。如EnzacryIAA是含有芳香氨基的聚丙烯酰胺衍生物,经重氮化可固定酶。用此法制备的有氨基酰化酶,淀粉酶等固定化酶。d.苯乙酰树脂。这是聚氨基苯乙烯(a)和一种异丁烯一间一氨基苯乙烯(b)的共聚物,通过重氮化后可固定酶.如胃蛋白酶、核糖核酸酶等。e.多孔玻璃的氨基硅烷衍生物。玻璃的化学改造物多孔玻璃在丙酮中与Y—氨基丙基三氧乙烷硅回流加热,生成烷基胺玻璃

1 / 222
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功