11、(2009福建宁德)26.(本题满分13分)如图,已知抛物线C1:522xay的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求P点坐标及a的值;(4分)(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(4分)(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.(5分)yxAOBPM图1C1C2C3图(1)yxAOBPN图2C1C4QEF图(2)13、(2009兰州)29.(本题满分9分)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.15、(2009广东梅州)23.(本题满分11分.)如图12,已知直线L过点(01)A,和(10)B,,P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.(1)直接写出直线L的解析式;(2)设OPt,OPQ△的面积为S,求S关于t的函数关系式;并求出当02t时,S的最大值;(3)直线1L过点A且与x轴平行,问在1L上是否存在点C,使得CPQ△是以Q为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.LAOMPBxyL1图12Q第22题图NMDCBA20.(09年广东)22.正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.11解:(1)由抛物线C1:522xay得顶点P的为(-2,-5)………2分∵点B(1,0)在抛物线C1上∴52102a解得,a=59………4分错误!未指定书签。(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G∵点P、M关于点B成中心对称∴PM过点B,且PB=MB∴△PBH≌△MBG∴MG=PH=5,BG=BH=3∴顶点M的坐标为(4,5)………6分抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到∴抛物线C3的表达式为54952xy………8分(3)∵抛物线C4由C1绕点x轴上的点Q旋转180°得到∴顶点N、P关于点Q成中心对称由(2)得点N的纵坐标为5设点N坐标为(m,5)………9分作PH⊥x轴于H,作NG⊥x轴于G作PK⊥NG于K∵旋转中心Q在x轴上∴EF=AB=2BH=6∴FG=3,点F坐标为(m+3,0)H坐标为(2,0),K坐标为(m,-5),根据勾股定理得PN2=NK2+PK2=m2+4m+104PF2=PH2+HF2=m2+10m+50NF2=52+32=34………10分①当∠PNF=90º时,PN2+NF2=PF2,解得m=443,∴Q点坐标为(193,0)②当∠PFN=90º时,PF2+NF2=PN2,解得m=103,∴Q点坐标为(23,0)③∵PN>NK=10>NF,∴∠NPF≠90º综上所得,当Q点坐标为(193,0)或(23,0)时,以点P、N、F为顶点的三角形是直角三角形.………13分13解:(1)Q(1,0)····················································································1分点P运动速度每秒钟1个单位长度.·································································2分(2)过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,4OFBE.∴1046AF.在Rt△AFB中,228610AB3分过点C作CG⊥x轴于点G,与FB的延长线交于点H.∵90,ABCABBC∴△ABF≌△BCH.∴6,8BHAFCHBF.∴8614,8412OGFHCG.yxAOBPN图(2)C1C4QEFHGKyxAOBPM图(1)C1C2C3HGABCDEFGHMNPQOxy∴所求C点的坐标为(14,12).4分(3)过点P作PM⊥y轴于点M,PN⊥x轴于点N,则△APM∽△ABF.∴APAMMPABAFBF.1068tAMMP.∴3455AMtPMt,.∴3410,55PNOMtONPMt.设△OPQ的面积为S(平方单位)∴213473(10)(1)5251010Stttt(0≤t≤10)·················································5分说明:未注明自变量的取值范围不扣分.∵310a0∴当474710362()10t时,△OPQ的面积最大.·························6分此时P的坐标为(9415,5310).·····································································7分(4)当53t或29513t时,OP与PQ相等.·················································9分15解:(1)1yx······················································································2分(2)∵OPt,∴Q点的横坐标为12t,①当1012t,即02t时,112QMt,∴11122OPQStt△.················································································3分②当2t≥时,111122QMtt,∴11122OPQStt△.∴11102221112.22tttSttt,,,≥···········································································4分当1012t,即02t时,211111(1)2244Sttt,∴当1t时,S有最大值14.··········································································6分(3)由1OAOB,所以OAB△是等腰直角三角形,若在1L上存在点C,使得CPQ△是以Q为直角顶点的等腰直角三角形,则PQQC,所以OQQC,又1Lx∥轴,则C,O两点关于直线L对称,所以1ACOA,得(11)C,.·····································7分下证90PQC°.连CB,则四边形OACB是正方形.法一:(i)当点P在线段OB上,Q在线段AB上(Q与BC、不重合)时,如图–1.由对称性,得BCQQOPQPOQOP,,∴180QPBQCBQPBQPO°,∴360()90PQCQPBQCBPBC°°.······································8分(ii)当点P在线段OB的延长线上,Q在线段AB上时,如图–2,如图–3∵12QPBQCB,,∴90PQCPBC°.·····················9分(iii)当点Q与点B重合时,显然90PQC°.综合(i)(ii)(iii),90PQC°.∴在1L上存在点(11)C,,使得CPQ△是以Q为直角顶点的等腰直角三角形.··········11分法二:由1OAOB,所以OAB△是等腰直角三角形,若在1L上存在点C,使得CPQ△是以Q为直角顶点的等腰直角三角形,则PQQC,所以OQQC,又1Lx∥轴,则C,O两点关于直线L对称,所以1ACOA,得(11)C,.····································7分LAOPBxyL123题图-1QCyLAOPBxL123题图-3QC21LAOPBxL123题图-2QC21y延长MQ与1L交于点N.(i)如图–4,当点Q在线段AB上(Q与AB、不重合)时,∵四边形OACB是正方形,∴四边形OMNA和四边形MNCB都是矩形,AQN△和QBM△都是等腰直角三角形.∴90NCMBMQNQANOMQNCQMB,,°.又∵OMMP,∴MPQN,∴QNCQMP△≌△,∴MPQNQC,又∵90MQPMPQ°,∴90MQPNQC°.∴90CQP°.·····················································································8分(ii)当点Q与点B重合时,显然90PQC°.····································9分(iii)Q在线段AB的延长线上时,如图–5,∵BCQMPQ,∠1=∠2∴90CQPCBM°综合(i)(ii)(iii),90PQC°.∴在1L上存在点(11)C,,使得CPQ△是以Q为直角顶点的等腰直角三角形.·····11分法三:由1OAOB,所以OAB△是等腰直角三角形,若在1L上存在点C,使得CPQ△是以Q为直角顶点的等腰直角三角形,则PQQC,所以OQQC,又1Lx∥轴,LAOPBxyL123题图-1QC23题图-4LAOMPBxyL1QCNyLAOPBxL123题图-5QC21则C,O两点关于直线L对称,所以1ACOA,得(11)C,.···················9分连PC,∵|1|PBt,12OMt,12tMQ,∴22222(1)122PCPBBCttt,2222222211222tttOQOPCQOMMQt.∴222PCOPQC,∴90CQP°.························································10分∴在1L上存在点(11)C,,使得CPQ△是以Q为直角顶点的等腰直角三角形.········11分(09年广东22题解析)(1)证明:∵四边形ABCD是正方形,∴∠B=∠C=90°,∠ABM+∠BAM=90°∵∠ABM+∠CMN+∠AMN=180°,∠AMN=90°∴∠AMB+∠CMN=90°∴∠BAM=∠CMN∴Rt△ABM∽Rt△MCN(2)∵Rt△ABM∽Rt△MCN,∴AB=MCBMCN