2013年湖南省高考数学试卷(文科)答案与解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

12013年湖南省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•湖南)复数z=i•(1+i)(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数的代数表示法及其几何意义.菁优网版权所有专题:计算题.分析:化简复数z,根据复数与复平面内点的对应关系可得答案.解答:解:z=i•(1+i)=﹣1+i,故复数z对应的点为(﹣1,1),在复平面的第二象限,故选B.点评:本题考查复数的代数表示法及其几何意义,属基础题.2.(5分)(2013•湖南)“1<x<2”是“x<2”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.菁优网版权所有专题:不等式的解法及应用.分析:设A={x|1<x<2},B={x|x<2},判断集合A,B的包含关系,根据“谁小谁充分,谁大谁必要”的原则,即可得到答案.解答:解:设A={x|1<x<2},B={x|x<2},∵A⊊B,故“1<x<2”是“x<2”成立的充分不必要条件.故选A.点评:本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键.3.(5分)(2013•湖南)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A.9B.10C.12D.13考点:分层抽样方法.菁优网版权所有专题:概率与统计.分析:甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,求出丙车间生产产品所占的比例,从而求出n的值.解答:解:∵甲、乙、丙三个车间生产的产品件数分别是120,80,60,∴甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,2丙车间生产产品所占的比例,因为样本中丙车间生产产品有3件,占总产品的,所以样本容量n=3÷=13.故选D.点评:本题主要考查了分层抽样方法,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.4.(5分)(2013•湖南)已知f(x)是奇函数,g(x)是偶函数,且f(﹣1)+g(1)=2,f(1)+g(﹣1)=4,则g(1)等于()A.4B.3C.2D.1考点:奇偶性与单调性的综合.菁优网版权所有专题:函数的性质及应用.分析:由f(x)、g(x)的奇偶性可得关于f(1)、g(1)的方程组,消掉f(1)即可求得g(1).解答:解:由f(x)是奇函数,g(x)是偶函数得,﹣f(1)+g(1)=2①,f(1)+g(1)=4②,由①②消掉f(1)得g(1)=3,故选B.点评:本题考查函数奇偶性及其应用,属基础题,定义是解决该类问题的基本方法.5.(5分)(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.考点:正弦定理.菁优网版权所有专题:计算题;解三角形.分析:利用正弦定理可求得sinA,结合题意可求得角A.解答:解:∵在△ABC中,2asinB=b,∴由正弦定理==2R得:2sinAsinB=sinB,∴sinA=,又△ABC为锐角三角形,∴A=.故选D.点评:本题考查正弦定理,将“边”化所对“角”的正弦是关键,属于基础题.6.(5分)(2013•湖南)函数f(x)=lnx的图象与函数g(x)=x2﹣4x+4的图象的交点个数为()3A.0B.1C.2D.3考点:根的存在性及根的个数判断;函数的图象.菁优网版权所有专题:函数的性质及应用.分析:在同一个坐标系中,画出函数f(x)=㏑x与函数g(x)=x2﹣4x+4=(x﹣2)2的图象,数形结合可得结论.解答:解:在同一个坐标系中,画出函数f(x)=㏑x与函数g(x)=x2﹣4x+4=(x﹣2)2的图象,如图所示:故函数f(x)=㏑x的图象与函数g(x)=x2﹣4x+4的图象的交点个数为2,故选C.点评:本题主要考查方程的根的存在性及个数判断,体现了数形结合的数学思想,属于中档题.7.(5分)(2013•湖南)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于()A.B.1C.D.考点:简单空间图形的三视图.菁优网版权所有专题:计算题.分析:通过三视图判断正视图的形状,结合数据关系直接求出正视图的面积即可.解答:解:因为正方体的棱长为1,俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,说明侧视图是底面对角线为边,正方体的高为一条边的矩形,几何体放置如图:那么正视图的图形与侧视图的图形相同,所以正视图的面积为:.故选D.4点评:本题考查几何体的三视图形状,侧视图的面积的求法,判断几何体的三视图是解题的关键,考查空间想象能力.8.(5分)(2013•湖南)已知,是单位向量,•=0.若向量满足|﹣﹣|=1,则||的最大值为()A.B.C.D.考点:平面向量数量积的运算;向量的模.菁优网版权所有专题:压轴题;平面向量及应用.分析:通过建立直角坐标系,利用向量的坐标运算和圆的方程及数形结合即可得出.解答:解:∵||=||=1,且,∴可设,,.∴.∵,∴,即(x﹣1)2+(y﹣1)2=1.∴的最大值==.故选C.5点评:熟练掌握向量的坐标运算和圆的方程及数形结合是解题的关键.9.(5分)(2013•湖南)已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为,则=()A.B.C.D.考点:简单线性规划.菁优网版权所有专题:压轴题;不等式的解法及应用.分析:先明确是一个几何概型中的长度类型,然后求得事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的线段长度,再利用两者的比值即为发生的概率,从而求出.解答:解:记“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”为事件M,试验的全部结果构成的长度即为线段CD,构成事件M的长度为线段CD其一半,根据对称性,当PD=CD时,AB=PB,如图.设CD=4x,则AF=DP=x,BF=3x,再设AD=y,则PB==,于是=4x,解得,从而.故选D.点评:本题主要考查几何概型,基本方法是:分别求得构成事件A的区域长度和试验的全部结果所构成的区域长度,两者求比值,即为概率.6二、填空题:本大题共6小题,每小题5分,共30分.10.(5分)(2013•湖南)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁UA)∩B={6,8}.考点:交、并、补集的混合运算.菁优网版权所有专题:集合.分析:先求出集合A的补集,再利用交集的定义求(CUA)∩B解答:解:由题意∵U={2,3,6,8},集合A={2,3},∴CUA={6,8},又B={2,6,8},故(CUA)∩B={6,8}故答案为:{6,8}.点评:本题考查交、并、补集的混合运算,正确解答本题关键是掌握并理解补集与交集的定义,并能根据所给的规则进行正确运算.11.(5分)(2013•湖南)在平面直角坐标系xOy中,若直线(s为参数)和直线(t为参数)平行,则常数a的值为4.考点:直线的一般式方程与直线的平行关系.菁优网版权所有专题:直线与圆.分析:先将直线的参数方程化为普通方程,再利用两条直线平行,直接求出a的值即可.解答:解:直线l1的参数方程为(s为参数),消去s得普通方程为x﹣2y﹣1=0,直线l2的参数方程为(t为参数),消去t得普通方程为2x﹣ay﹣a=0,∵l1∥l2,x﹣2y﹣1=0的斜率为k1=,∴2x﹣ay﹣a=0的斜率k2==,解得:a=4.故答案为:4.点评:本题是基础题,考查直线的平行条件的应用,注意直线的斜率是否存在是解题关键,考查计算能力.12.(5分)(2013•湖南)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为9.7考点:程序框图.菁优网版权所有专题:图表型;算法和程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环累加a值,并判断满足a>8时输出a的值.解答:解:程序在运行过程中各变量的聚会如下表示:是否继续循环ab循环前/12第一圈是32第二圈是52第三圈是72第四圈是92第五圈否故最终输出的a值为9.故答案为:9.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.13.(5分)(2013•湖南)若变量x,y满足约束条件,则x+y的最大值为6.考点:简单线性规划.菁优网版权所有专题:不等式的解法及应用.分析:先画出线性约束条件表示的可行域,再将目标函数赋予几何意义,最后利用数形结合即可得目标函数的最值.解答:解:画出可行域如图阴影部分,由得A(4,2)目标函数z=x+y可看做斜率为﹣1的动直线,其纵截距越大z越大,由图数形结合可得当动直线过点A时,z最大=4+2=68故答案为:6.点评:本题主要考查了线性规划,以及二元一次不等式组表示平面区域的知识,数形结合的思想方法,属于基础题.14.(5分)(2013•湖南)设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为.考点:双曲线的简单性质.菁优网版权所有专题:压轴题;圆锥曲线的定义、性质与方程.分析:根据题意可知∠F1PF2=90°,∠PF2F1=60°,|F1F2|=2c,求得|PF1|和|PF2|,进而利用双曲线定义建立等式,求得a和c的关系,则离心率可得.解答:解:依题意可知∠F1PF2=90°|F1F2|=2c,∴|PF1|=|F1F2|=c,|PF2|=|F1F2|=c,由双曲线定义可知|PF1|﹣|PF2|=2a=(﹣1)c∴e==.故答案为:.点评:本题主要考查了双曲线的简单性质特别是双曲线定义的运用,属于基础题.15.(5分)(2013•湖南)对于E={a1,a2,….a100}的子集X={ai1,ai2,…,aik},定义X的“特征数列”为x1,x2…,x100,其中xi1=xi2=…xik=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于2;(2)若E的子集P的“特征数列”P1,P2,…,P100满足p1=1,pi+pi+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,q100满足q1=1,qj+qj+1+qj+2=1,1≤j≤98,则P∩Q的元素个数为17.考点:数列的求和;交集及其运算.菁优网版权所有专题:压轴题;新定义.分析:(1)利用“特征数列”的定义即可得出;(2)利用“特征数列”的定义分别求出子集P,Q的“特征数列”,再找出相同“1”的个数即可.9解答:解:(1)子集{a1,a3,a5}的“特征数列”为:1,0,1,0,1,0,…,0.故前三项和等于1+0+1=2;(2)∵E的子集P的“特征数列”P1,P2,…,P100满足Pi+Pi+1=1,1≤i≤99,∴P的特征数列为1,0,1,0,…,1,0.其中奇数项为1,偶数项为0.则P={a1,a3,a5,…,a99}有50个元素,又E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,qj+qj+1+qj+2=1,1≤j≤98,可知:j=1时,q1+q2+q3=1,∵q1=1,∴q2=q3=0;同理q4=1=q7=…=q3n﹣

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功