直线和圆的位置关系1、直线与圆的位置关系(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交<====>dr;直线l与⊙O相切<====>d=r;直线l与⊙O相离<====>dr;2、切线的判定和性质(1)、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。(2)、切线的性质定理:圆的切线垂直于经过切点的半径。如右图中,OD垂直于切线。4、切线长定理(1)、切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。(2)、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。(3)、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。(4)、三角形的内切圆:与三角形的各边都相切的圆叫做三角形的内切圆。如图圆O是△A'B'C'的内切圆。三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。基础训练1.填表:直线与圆的位置关系图形公共点个数公共点名称圆心到直线的距离d与圆的半径r的关系直线的名称相交相切相离2.若直线a与⊙O交于A,B两点,O到直线a的距离为6,AB=16,则⊙O的半径为_____.3.在△ABC中,已知∠ACB=90°,BC=AC=10,以C为圆心,分别以5,52,8为半径作图,那么直线AB与圆的位置关系分别是______,_______,_______.4.⊙O的半径是6,点O到直线a的距离为5,则直线a与⊙O的位置关系为()A.相离B.相切C.相交D.内含5.下列判断正确的是()①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,则直线与圆相交.A.①②③B.①②C.②③D.③6.OA平分∠BOC,P是OA上任一点(O除外),若以P为圆心的⊙P与OC相离,那么⊙P与OB的位置关系是()A.相离B.相切C.相交D.相交或相切7.如图所示,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C与AB相切?8.如图,⊙O的半径为3cm,弦AC=42cm,AB=4cm,若以O为圆心,再作一个圆与AC相切,则这个圆的半径为多少?这个圆与AB的位置关系如何?◆提高训练9.如图所示,在直角坐标系中,⊙M的圆心坐标为(m,0),半径为2,如果⊙M与y轴所在直线相切,那么m=______,如果⊙M与y轴所在直线相交,那么m的取值范围是_______.10.如图,△ABC中,AB=AC=5cm,BC=8cm,以A为圆心,3cm长为半径的圆与直线BC的位置关系是_______.11.如图,正方形ABCD的边长为2,AC和BD相交于点O,过O作EF∥AB,交BC于E,交AD于F,则以点B为圆心,2长为半径的圆与直线AC,EF,CD的位置关系分别是什么?12.已知⊙O的半径为5cm,点O到直线L的距离OP为7cm,如图所示.(1)怎样平移直线L,才能使L与⊙O相切?(2)要使直线L与⊙O相交,应把直线L向上平移多少cm?13.如图,Rt△ABC中,∠C=90°,AC=3,AB=5,若以C为圆心,r为半径作圆,那么:(1)当直线AB与⊙C相切时,求r的取值范围;(2)当直线AB与⊙C相离时,求r的取值范围;(3)当直线AB与⊙C相交时,求r的取值范围.14.在南部沿海某气象站A测得一热带风暴从A的南偏东30°的方向迎着气象站袭来,已知该风暴速度为每小时20千米,风暴周围50千米范围内将受到影响,若该风暴不改变速度与方向,问气象站正南方60千米处的沿海城市B是否会受这次风暴的影响?若不受影响,请说明理由;若受影响,请求出受影响的时间.九年级下册直线和圆的位置关系练习题一、选择题:1.若∠OAB=30°,OA=10cm,则以O为圆心,6cm为半径的圆与射线AB的位置关系是()A.相交B.相切C.相离D.不能确定2.Rt△ABC中,∠C=90°,AB=10,AC=6,以C为圆心作⊙C和AB相切,则⊙C的半径长为()A.8B.4C.9.6D.4.83.⊙O内最长弦长为m,直线l与⊙O相离,设点O到l的距离为d,则d与m的关系是()A.d=mB.d>mC.d>2mD.d<2m4.以三角形的一边长为直径的圆切三角形的另一边,则该三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.菱形对角线的交点为O,以O为圆心,以O到菱形一边的距离为半径的圆与其他几边的关系为()A.相交B.相切C.相离D.不能确定6.⊙O的半径为6,⊙O的一条弦AB为63,以3为半径的同心圆与直线AB的位置关系是()A.相离B.相交C.相切D.不能确定7.下列四边形中一定有内切圆的是()A.直角梯形B.等腰梯形C.矩形D.菱形8.已知△ABC的内切圆O与各边相切于D、E、F,那么点O是△DEF的()A.三条中线交点B.三条高的交点C.三条角平分线交点D.三条边的垂直平分线的交点9.给出下列命题:①任一个三角形一定有一个外接圆,并且只有一个外接圆;②任一个圆一定有一个内接三角形,并且只有一个内接三角形;③任一个三角形一定有一个内切圆,并且只有一个内切圆;④任一个圆一定有一个外切三角形,并且只有一个外切三角形.其中真命题共有()A.1个B.2个C.3个D.4个二、证明题1.如图,已知⊙O中,AB是直径,过B点作⊙O的切线BC,连结CO.若AD∥OC交⊙O于D.求证:CD是⊙O的切线.2.已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线.3.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.(1)当圆心O与C重合时,⊙O与AB的位置关系怎样?(2)若点O沿CA移动时,当OC为多少时?⊙C与AB相切?4.如图,直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上一点,DE平分∠ADC,CE平分∠BCD,以AB为直径的圆与边CD有怎样的位置关系?5.设直线ι到⊙O的圆心的距离为d,半径为R,并使x2-2dx+R=0,试由关于x的一元二次方程根的情况讨论ι与⊙O的位置关系.6.如图,AB是⊙O直径,⊙O过AC的中点D,DE⊥BC,垂足为E.(1)由这些条件,你能得出哪些结论?(要求:不准标其他字母,找结论过程中所连的辅助线不能出现在结论中,不写推理过程,写出4个结论即可)(2)若∠ABC为直角,其他条件不变,除上述结论外你还能推出哪些新的正确结论?并画出图形.(要求:写出6个结论即可,其他要求同(1))7.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?8.如图,有一块锐角三角形木板,现在要把它截成半圆形板块(圆心在BC上),问怎样截取才能使截出的半圆形面积最大?(要求说明理由)9.如图,直线ι1、ι2、ι3表示相互交叉的公路.现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?答案:一.1-5ADCBB;6-9CDDB二.1.提示:连结OC,证△AOC与△BOC全等2.作垂直证半径,弦心距相等3.①垂直三角形的高,用面积方法求;②△AOE∽△ABC即可4.用角平分线定理证明EF=EA=EB即可5.做三角形的内切圆6.①DE与⊙O相切,AB=BC,DE2+CE2=CD2,∠C+∠CDE=90°②BC是⊙O的切线,有DE=1/2AB等.7.R=2.4或3R≤48.∠A角平分线与BC的交点为圆心O,O到AC的距离为半径做圆9.4