第1页共4页函数的基本性质1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。(2)利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;②设()fx,()gx的定义域分别是12,DD,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶2.单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2)(f(x1)f(x2)),那么就说f(x)在区间D上是增函数(减函数);注意:○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○2必须是对于区间D内的任意两个自变量x1,x2;当x1x2时,总有f(x1)f(x2)(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。(3)设复合函数y=f[g(x)],其中u=g(x),A是y=f[g(x)]定义域的某个区间,B是映射g:x→u=g(x)的象集:①若u=g(x)在A上是增(或减)函数,y=f(u)在B上也是增(或减)函数,则函数y=f[g(x)]在A上是增函数;②若u=g(x)在A上是增(或减)函数,而y=f(u)在B上是减(或增)函数,则函数y=f[g(x)]在A上是减函数。(4)判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:○1任取x1,x2∈D,且x1x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(即指出函数f(x)在给定的区间D上的单调性)。(5)简单性质①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反;③在公共定义域内:第2页共4页增函数)(xf增函数)(xg是增函数;减函数)(xf减函数)(xg是减函数;增函数)(xf减函数)(xg是增函数;减函数)(xf增函数)(xg是减函数。3.最值(1)定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M。那么,称M是函数y=f(x)的最大值。最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M。那么,称M是函数y=f(x)的最大值。注意:○1函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0)=M;○2函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M)。(2)利用函数单调性的判断函数的最大(小)值的方法:○1利用二次函数的性质(配方法)求函数的最大(小)值;○2利用图象求函数的最大(小)值;○3利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);4.周期性(1)定义:如果存在一个非零常数T,使得对于函数定义域内的任意x,都有f(x+T)=f(x),则称f(x)为周期函数;(2)性质:①f(x+T)=f(x)常常写作),2()2(TxfTxf若f(x)的周期中,存在一个最小的正数,则称它为f(x)的最小正周期;②若周期函数f(x)的周期为T,则f(ωx)(ω≠0)是周期函数,且周期为||T。函数的基本性质一、典型选择题1.在区间上为增函数的是()A.B.C.D.2.函数是单调函数时,的取值范围()A.B.C.D.3.如果偶函数在具有最大值,那么该函数在有()A.最大值B.最小值C.没有最大值D.没有最小值4.函数,是()A.偶函数B.奇函数C.不具有奇偶函数D.与有关第3页共4页5.函数在和都是增函数,若,且那么()A.B.C.D.无法确定6.函数在区间是增函数,则的递增区间是()A.B.C.D.7.函数在实数集上是增函数,则()A.B.C.D.8.定义在R上的偶函数,满足,且在区间上为递增,则()A.B.C.D.9.已知在实数集上是减函数,若,则下列正确的是()A.B.C.D.二、典型填空题1.函数在R上为奇函数,且,则当,.2.函数,单调递减区间为,最大值和最小值的情况为.三、典型解答题1.(12分)已知,求函数得单调递减区间.2.(12分)已知,,求.第4页共4页