(2013年秋)人教版七年级数学上册课后同步练习1.5 有理数的乘方

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1课后训练基础巩固1.求25-3×[32+2×(-3)]+5的值为(  ).A.21B.30C.39D.712.对于(-2)4与-24,下面说法正确的是(  ).A.它们的意义相同B.它们的结果相同C.它们的意义不同,结果相等D.它们的意义不同,结果不等3.下列算式正确的是(  ).A.22433B.23=2×3=6C.-32=-3×(-3)=9D.-23=-84.在绝对值小于100的整数中,可以写成整数平方的个数是(  ).A.18B.19C.10D.95.若an>0,n为奇数,则a(  ).A.一定是正数B.一定是负数C.可正可负D.以上都不对6.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?能力提升7.-(-32)-|-4|的值为(  ).A.13B.-13C.5D.-58.下列式子正确的是(  ).A.-24<(-2)2<(-2)3B.(-2)3<-24<(-2)2C.-24<(-2)3<(-2)2D.(-2)2<(-2)3<-249.a,b互为相反数,a≠0,n为自然数,则(  ).A.an,bn互为相反数B.a2n,b2n互为相反数C.a2n+1,b2n+1互为相反数D.以上都不对10.若x为有理数,则|x|+1一定是(  ).A.等于1B.大于1C.不小于1D.小于111.某市约有230万人口,用科学记数法表示这个数为(  ).A.230×104B.23×105C.2.3×105D.2.3×10612.为了保护人类居住环境,我国的火电企业积极做好节能环保工作.2011年,我国火电企业的平均煤耗继续降低,仅为330000毫克/千瓦时,用科学记数法表示并精确到1000毫克/千瓦时为__________毫克/千瓦时.13.计算:-24-17×[2-(-2)4]的结果为__________.14.计算下列各题:(1)(-3)2-(-2)3÷323;(2)-72+2×(-3)2-(-6)÷213.15.如果|a+1|+(b-2)2=0,求(a+b)39+a34的值.16.已知|x-1|+(y+3)2=0,求(xy)2的值.17.观察下列各式找规律:212+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2;……(1)写出第2004行式子;(2)用字母表示你所发现的规律.3参考答案1答案:A 点拨:原式=25-3×(9-6)+5=25-9+5=21,所以A正确,故选A.2答案:D 点拨:(-2)4的意义是-2的4次方,-24的意义是2的4次方的相反数,所以意义不同,结果也不等.3答案:D 点拨:根据乘方定义计算,只有D正确,故选D.4答案:C 点拨:这样的数不能是负数,只能是非负数.5答案:A 点拨:正数的奇次幂是正数,负数的奇次幂为负数,所以a为正数.6解:71112128(米).答:第7次后剩下的木棒长1128米.7答案:C 点拨:原式=-(-9)-4=9-4=5,所以选C.8答案:C 点拨:A.-16<4<-8,错误;B.-8<-16<4,错误;C.-16<-8<4,正确;D.4<-8<-16,错误.故选C.9答案:C 点拨:a,b互为相反数,那么它们的奇次幂互为相反数,它们的偶次幂相等,而n不确定,2n为偶数,2n+1为奇数,所以只有C正确.10答案:C 点拨:|x|≥0,则|x|+1≥1,故C正确.11答案:D12答案:3.30×10513答案:-14点拨:本题容易出现错解:原式=16-17×(2-16)=16+2=18,其错误在于不能正确理解-24与(-2)4的区别造成的,-24是4个2相乘的相反数,底数为2,结果为-16;(-2)4是4个-2相乘,底数为-2,结果为16.原式=-16-17×(2-16)=-16+2=-14.14解:(1)原式=9-(-8)÷827=9-(-8)×278=9-27=-18.(2)原式=-49+2×9-(-6)÷19=-49+18-(-54)=-49+18+54=23.点拨:先算乘方,再算乘除,最后算加减.15解:因为|a+1|+(b-2)2=0,所以a+1=0,b-2=0,即a=-1,b=2.因此(a+b)39+a34=[(-1)+2]39+(-1)34=1+1=2.点拨:利用|a+1|与(b-2)2的非负性.16解:∵|x-1|≥0,(y+3)2≥0,又∵|x-1|+(y+3)2=0,∴|x-1|=0,(y+3)2=0.∴x=1,y=-3.4∴(xy)2=[1×(-3)]2=9.17解:(1)20042+(2004×2005)2+20052=(2004×2005+1)2.(2)n2+[n×(n+1)]2+(n+1)2=[n×(n+1)+1]2.点拨:观察式子,寻找数序号与数字之间的变化规律,从而由特殊到一般,得到变化规律,写出结果.

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功