定积分习题课1一、主要内容问题1:曲边梯形的面积问题2:变速直线运动的路程定积分存在定理广义积分定积分的性质牛顿-莱布尼茨公式)()()(aFbFdxxfba定积分的计算法2二、内容提要1定积分的定义定义的实质几何意义物理意义2可积和可积的两个充分条件3定积分的性质线性性badxxgxf)]()([badxxf)(badxxg)(可加性badxxf)(bccadxxfdxxf)()(若0)(xf,则0)(dxxfba)(ba非负性3比较定理若)()(xgxf,则dxxfba)(dxxgba)()(ba估值定理)(xf在区间],[ba上的最大值及最小值,)()()(abMdxxfabmba.积分中值定理如果函数)(xf在闭区间],[ba上连续,则在积分区间],[ba上至少存在一个点,使dxxfba)())((abf)(ba积分中值公式若M和m是4变上限定积分及其导数如果)(xf在],[ba上连续,则积分上限的函数dttfxxa)()(在],[ba上具有导数,且它的导数是)()()(xfdttfdxdxxa)(bxa如果)(xf在],[ba上连续,则积分上限的函数dttfxxa)()(就是)(xf在],[ba上的一个原函数.5.)]([)(babaxFdxxf牛顿—莱布尼茨公式定积分的计算法(1)换元法dtttfdxxfba)()]([)(换元积分公式(2)分部积分法bababavduuvudv][分部积分公式微积分基本公式如果)(xF是连续函数)(xf在区间],[ba上的一个原函数,则)()()(aFbFdxxfba6利用对称区间上奇偶函数的性质简化定积分的计算广义积分(1)无穷限的广义积分adxxf)(babdxxf)(limbdxxf)(baadxxf)(lim(2)无界函数的广义积分badxxf)(badxxf)(lim0badxxf)(badxxf)(lim07badxxf)(cadxxf)(bcdxxf)(cadxxf)(lim0bcdxxf)(lim0三、典型例题例1.cossinsin20dxxxx求解,cossinsin20dxxxxI由,cossincos20dxxxxJ设,220dxJI则20cossincossindxxxxxJI20cossin)sin(cosxxxxd.0,22I故得.4I即8例2广义积分中值定理设f(x)在[a,b]上连续,g(x)在[a,b]上可积,且不变号,则babadxxgfdxxgxfba)()()()(],,[使证因f(x)在[a,b]上连续,故f(x)在[a,b]上必取得最大值M和最小值m,Mxfm)(又g(x)在[a,b]上不变号故不妨设0)(xgbadxxg0)()()()()(xMgxgxfxmgbababadxxgMdxxgxfdxxgm)()()()(9若0)(badxxg则由上式知badxxgxf0)()(babadxxgfdxxgxf)()()()(可取[a,b]内任一点若babadxxgdxxg0)(,0)(则Mdxxgdxxgxfmbaba)()()(由介值定理babadxxgdxxgxffba)()()()(],[使babadxxgfdxxgxf)()()()(10例3证明01lim10dxxxnn证一nnxxx10101010dxxdxxxnn11n由夹逼定理得令,n01lim10dxxxnn由广义积分中值定理11111111010ndxxdxxxnn011lim,1|11|nn有界01lim10dxxxnn证二11dxxxInn101记dxIxxnn10111则10111ndxxIInnn由夹逼定理得令,n01lim10dxxxnn例4求极限]12111[lim)1(nnnnnnnnn!lnlim)2(nnII1112nnnIIInIn21证三12解①]11211111[limnnnnInnninin111lim11010)1ln(11xdxx2ln②)21ln(1limnnnnnInnninin1)ln(lim1101lnxdx13如果能把数列的通项写成)1(1)(111nininifnnifn或的形式就可以利用)(1lim1ninnifn或)1(1lim1ninnifn把数列极限问题转化为定积分10)(dxxf的计算问题与数列的极限有着密切联系由以上两例可见,连续函数f(x)的定积分14.2sinln40xdx求解,2tx令.sinln212sinln2040tdtxdx402sinlnxdxI40)cossin2ln(dxxx40)coslnsinln2(lndxxx2440sinlnsinln2ln4xdxxdx20sinln2ln4xdxI22ln4.2ln4I例515.},1min{222dxxx求解1,11,},1min{22xxxxxx是偶函数,dxxx},1min{2220原式21102122dxxdxx.2ln232例616证明Cauchy-Schwarz不等式bababadxxgdxxfdxxgxf)()()()(222证,Rt0)]()([2xgxtfbadxxgxtf0)]()([2bababadxxgdxxgxftdxxft0)()()(2)(222bababadxxgdxxfdxxgxf0)()(4)()(4222bababadxxgdxxfdxxgxf)()()()(222例717记xaxaxadttgdttfdttgtfxF)()()()()(222则xaxaxadttfxgdttgxfdttgtfxgxfxF)()()()()()()()(2)(22220)()()()()()()()(22222dtxgtftgxftgtfxgxfxa单调减)(xF0)()()(aFxFbFbababadxxgdxxfdxxgxf)()()()(222即另证18定积分不等式的证明方法——辅助函数法①将一个积分限换成变量,移项使一端为0另一端即为所求作的辅助函数F(x)②判定单调性,与端点的值进行比较即得证)(xF求19例8设0)0(,0)0(,)(ffxf连续求xxxdttfxdttf0200)()(2lim解xxxfxdttfxxxfI0220)()(2)(2limxxxxfdttfxf020)()(2)(2lim)()(3)(4lim20xfxxfxfxx)(0)0()(3)(4lim20xfxfxfxfx1)0()0(3)0(4fff201sinlim020xbxdttatxx这是型未定式的极限解由L’Hospital法则1)cos(lim20xaxbxIx0lim20xx0)cos(lim0xaxbx0)1(ab00a=0或b=1将a=0代入知不合题意故b=14,12)cos1(lim20aaxaxxx例9试确定a,b的值使210)(,]1,0[)(xfxf上连续在证明1010)(ln)(lndxxfdxxf证一由定积分的定义)(ln1lim)(ln101nifndxxfninninnifn1)(1lnlim(因f(x)是凸函数)ninnifn1)(1limlndxxf10)(ln证二记adxxf10)(则a0例10设22xyln上凸故其上任一点的切线都在曲线的上方在x=a处的切线方程为)(1lnaxaay])([1ln)(ln),(atfaatftfx有令101010])([1ln)(lndtatfaadtdttf101)(1lndttfaaaln证三易证明当t0时有1lntt或teet10)()(dxxfxft令又曲线231)()()(ln)(ln1010dxxfxfdxxfxf01)()()(ln)(ln10101010dxxfdxxfdxxfdxxf1010)(ln)(lndxxfdxxf例11设f(x)在[a,b]上连续且f(x)0证明baabdxxfdxxfdxxfba)(21)()(],[使24令xadttfxF)()(则F(x)在[a,b]上连续,在(a,b)内可导0)()(xfxF即F(x)单调增设)(),(bFMaFm则badxxfMm)(,0babaMdxxfdxxfm)()(210由介值定理得badxxfFba)(21)(],,[使即baadxxfdxxf)(21)(babbaadxxfdxxfdxxfdxxf)(21)()()(证2510)(,]1,0[)(Adxxfxf上连续在设101)()(xdyyfxfdx计算解101])()[(xdxdyyfxfIxxdttfddyyf0101)()(dxxfdttfdttfdyyfxxx)]([)()()(1001010xxdttfddttfdxxfdttf01001010)()()()(2)(212210Adttf例1226例13设f(x)在[0,1]上连续,且单调不增证明对任何有]1,0[010)()(dxxfdxxf证一]1,0[1001)()()(dxxfdxxfdxxf由积分中值定理1010)()(fdxxf1)1)(()(212fdxxf再由f(x)单调不增得及2127)()(21ff1001)()()(dxxfdxxfdxxf)1)(()(21ff)1)(()(11ff)(1f0101)()()(dxxffdxxf证二010)()(1)(dxxfdxxfF记则F(1)=020)()()(dxxffF再由f(x)单调不增2800)()()(fdxfdxxf0)(F单调减得)(F0)1()(FF100)()(dxxfdxxf即证三010)()(dxxfdxxf001)()()(dxxfdxxfdxxf01)()()1(dxxfdxxf0)()1()()1(ff证四tx令010)()(dttfdxxf2910)(dttf))()((tftf证五由f(x)单调不增)1()()(1