机械CAD-CAM技术第三讲-计算机图形处理技术

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

前一页后一页退出-1-机械CAD/CAM技术中南林业科技大学机械设计制造极其自动化教研室易春峰前一页后一页退出-2-第三讲计算机图形处理技术计算机图形处理技术是利用计算机的高速运算能力和实时显示功能来处理各类图形信息的技术,包括图形的输入、。图形的生成显示、图形的变换、编辑、识别以及图形的输出绘制等方面,这是计算机图形学的重要内容,也是CAD/CAM作业中的基本组成部分。本章主要介绍有关的图形变换、图形绘制以及曲线曲面等方面的基本原理和方法。前一页后一页退出-3-第一节图形变换一、窗口-视区变换1、窗口在进行图形处理时,常常对整幅图形中的某个部分表示关注,要把指定的局部图形从整幅图形中分离出来,往往采用开“窗口”的方法加以解决,即用户在所需要的图形部分区域选定一个观察框,这个观察框被称之为窗口,然后,经过图形软件系统的图形变换与裁剪处理,窗口内的图形便在屏幕上显示出来。前一页后一页退出-4-窗口通常被定义为一个矩形框前一页后一页退出-5-2、视区视区是在图形设备上(如图形显示器)定义的矩形区域,用于输出所要显示的图形和文字。视区是一个有限的整数域,它小于或等于屏幕区域。如果在同一屏幕上定义多个视区,则可同时显示不同的图形信息,如在绘图时常将图形屏幕分为四个视区,其中三个视区用于显示零件的三视图,另一个用于显示零件的轴测图。前一页后一页退出-6-SE零件的四个视区前一页后一页退出-7-ACAD零件的四个视区前一页后一页退出-8-3、窗口与视区的变换窗口与视区的大小和单位都不相同,为了把所选定窗口内的图形内容在希望的视区上显示出来,必须进行坐标变换,如图3-2,窗口与视区的变换可以归结为坐标点的变换。前一页后一页退出-9-设窗口内某一点坐标为(Xw,Yw),映射到视区内坐标为(Xv,Yv),则它们之间的变换关系为:)(121211)(121211前一页后一页退出-10-窗口与视区的变换特点当视区大小不变时,窗口缩小或放大时,则显示的图形会相反地放大或缩小;当窗口大小不变时,视区缩小或放大时,则显示的图形会跟随缩小或放;当窗口与视区大小相同时,则显示的图形大小比例不变;若视区纵横比不等于窗口的纵横比时,则显示的图形会有伸缩变化。前一页后一页退出-11-窗口缩小视区不变缩小的窗口前一页后一页退出-12-二、二维图形的几何变换1.工程图形的齐次坐标矩阵表示任何工程图形都可视为点的集合,图形变换的实质就是对组成图形的各顶点进行坐标变换。为了便于图形的变换计算,需要引用齐次坐标的概念。所谓齐次坐标即将一个n维矢量用n+1维矢量表示,如二维的点坐标(x,y)可简单地表示为(x,y,1)。前一页后一页退出-13-对于几何图形可引用齐次坐标矩阵进行表示。例如三角形A,在二维、三维平面内,其齐次坐标矩阵可分别表示为:111332211yxyxyxA111333222111zyxzyxzyxA前一页后一页退出-14-2、二维图形的基本几何变换设一个几何图形为A,对该图形施行某种变换后得到的新图形为B,则式B=AT成立。显然,B为变换后图形矩阵,那么称T为变换矩阵,它是用来对原图形施行坐标变换的工具。根据矩阵运算原理可知,二维图形变换T矩阵为3X3阶矩阵,而三维图形变换矩阵T则为4X4阶矩阵。前一页后一页退出-15-(1)比例变换设图形在x,y两个坐标方向放大或缩小比例分别为a和d,则坐标点的比例变换为:1100000011''dyaxdayxyx前一页后一页退出-16-若a=d=1,为恒等变换,即变换后的图形坐标不变;若a=d≠1,则为等比例变换,>1时为等比例放大,<1时为等比例缩小;若a≠d则图形在x,y两个坐标方向以不同的比例变换。前一页后一页退出-17-(2)对称变换坐标点的对称变换为:11000011''dybxcyaxdcbayxyx前一页后一页退出-18-1)当b=c=0,a=-1,d=1时,有x’=-x,y’=y,产生与y轴对称图形,如图所示:11000011''dybxcyaxdcbayxyx前一页后一页退出-19-11000011''dybxcyaxdcbayxyx2)当b=c=0,a=1,d=-1时,有x’=x,y’=-y,产生与x轴对称图形,如图所示:前一页后一页退出-20-11000011''dybxcyaxdcbayxyx3)当b=c=0,a=d=-1时,有x’=-x,y’=-y,产生与原点对称图形,如图所示:前一页后一页退出-21-11000011''dybxcyaxdcbayxyx4)当b=c=1,a=d=0时,有x’=y,y’=x,产生与45°线对称的图形,如图所示:前一页后一页退出-22-11000011''dybxcyaxdcbayxyx5)当b=c=-1,a=d=0时,有x’=-y,y’=-x,产生与-45°线对称的图形,如图所示:前一页后一页退出-23-(3)旋转变换若使图形绕坐标原点旋转θ角,逆时针为正,顺时针为负,则对坐标点的旋转变换为:1cossinsincos1000cossin0sincos11''yxyxyxyx前一页后一页退出-24-(4)错切变换其中,c,b分别为x,y坐标的错切系数。1100010111''ybxcyxcbyxyx前一页后一页退出-25-1)当b=0,x’=x+cy,y’=y。此时图形y坐标不变,c>0,图形沿+x方向作错切位移;c<0,图形沿-x方向作错切位移,如图所示:1100010111''ybxcyxcbyxyx前一页后一页退出-26-1100010111''ybxcyxcbyxyx2)当c=0,x’=x,y’=bx+y。此时图形x坐标不变,b>0,图形沿+y方向作错切位移;b<0,图形沿-y方向作错切位移,如图所示:前一页后一页退出-27-(5)平移变换图形在x轴方向的平移量为l,在y轴方向的平移量为m,则坐标点的平移变换为:1101000111''mylxmlyxyx前一页后一页退出-28-从上述介绍的5种二维图形的基本几何变换可见,各种图形变换完全取决于变换矩阵中各元素的取值。按照变换矩阵中各元素的功能,可将二维变换矩阵的一般表达式按如下虚线分为4个子矩阵:smlqdcpbaT前一页后一页退出-29-子矩阵可以实现图形的比例、对称、错切、旋转等基本几何变换;子矩阵[lm]可以实现图形的平移变换;子矩阵可以实现图形的透视变换;子矩阵[s]实现图形的全比例变换,当s>1时,图形等比例缩小;0<s<1时,图形等比例放大。dcbaqp前一页后一页退出-30-3、复合变换CAD/CAM作业中的图形变换是复杂的,往往仅用一种基本变换是不能实现的,必须由两种或多种基本变换l的组合才能得到所需要的最终图形。这种由多种基本变换的组合而实现的变换称之为复合变换,相应的变换矩阵称之为复合变换矩阵,复合变换矩阵为多个基本变换矩阵的乘积。前一页后一页退出-31-复合变换举例·例如,将图形绕任意点P(xp,yp)转a角的旋转变换,可通过如下的基本变换实现:将旋转中心P点平移到坐标原点,基本变换矩阵为T平;将图形绕坐标原点旋转a角,基本变换矩阵为T转;再将旋转中心平移回到原来位置,基本变换矩阵为T-平。前一页后一页退出-32-则,图形绕任意点P的旋转变换矩阵为:复合变换举例··1cossinsincos0cossin0sincos10100011000cossin0sincos1010001ppppppppppyayaxxayaxaaaayxaaaayxTTTT平转平注:矩阵乘法不符合交换律,矩阵的求解顺序不得随意变动。前一页后一页退出-33-三、三维图形的几何变换三维图形的几何变换可在二维图形几何变换的基础上进行简单的扩展,运用齐次坐标的方法,可将三维空间点的几何变换表示为:[x’y’z’1]=[xyz1]T其中,T是4X4阶的变换矩阵,即:smlrjihqfedpcbaTn前一页后一页退出-34-三维变换矩阵的四个子矩阵与二维相同,也可将三维变换矩阵按虚线分为4个子矩阵,其中左上角子矩阵产生三维图形的比例、对称、错切和旋转变换;左下角子矩阵产生平移变换;右上角子矩阵产生透视变换;右下角子矩阵产生全比例变换。smlrjihqfedpcbaTn前一页后一页退出-35-1、三维比例变换其中,a,e,j分别为x,y,z三个坐标方向的比例因子。当a=e=j>1时,图形将等比例放大;当a=e=j<1时,则图形将等比例缩小。1100000000000011'''jzeyaxjeazyxzyx前一页后一页退出-36-2、三维对称变换相对于XOY平面、YOZ平面和XOZ平面三个坐标平面的对称变换矩阵分别为:1000010000100001xoyT1000010000100001yozT1000010000100001xozT前一页后一页退出-37-3、三维错切变换三维错切变换矩阵为:1000010101ihfdcbT其中,d,h为沿x方向的错切系数;b,i为沿y方向的错切系数;c,f为沿z方向的错切系数。前一页后一页退出-38-4、三维平移变换三维平移变换矩阵为:1010000100001nmlT其中,l,m,n分别为x,y,z三个坐标方向上的平移量。前一页后一页退出-39-5、三维旋转变换·(1)绕z轴旋转α角的变换矩阵:1000010000cossin00sincoszT前一页后一页退出-40-5、三维旋转变换··(2)绕X轴旋转β角的变换矩阵:10000cossin00sincos00001xT前一页后一页退出-41-5、三维旋转变换···(3)绕Y轴旋转γ角的变换矩阵:10000cos0sin00100sin0cosyT前一页后一页退出-42-第二节计算机辅助绘图计算机辅助绘图是在计算机软硬件的辅助下进行绘图作业的一项技术,具有效率高。便于编辑、修改和管理的特点。本节在介绍目前人们常用的交互式绘图、程序参数化绘图和尺寸驱动式参数化绘图的基础上,介绍参数化图库的建库方法和从三维实体模型中自动生成二维工程图的相关技术。前一页后一页退出-43-一、交互式绘图交互式绘图是指在交互式绘图系统的支持下,用户使用键盘、鼠标等输入设备通过人机对话的方式进行绘图的方法。这种方法的最大优点在于:用户输入绘图命令及有关参数后,能实时地在图形显示设备上得到所绘的图形,并能直接进行编辑修改,直至满意为止,整个绘图过程非常直观、灵活。前一页后一页退出-44-目前,在国内比较流行的交互式绘图CAD软件有具有自主版权的CAXA电子图板。开目CAD。高华CAD和PICAD等,以及如AutoCAD、Microstation等国外的软件系统。使用最多的还是AutoCAD前一页后一页退出-45-Aut

1 / 118
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功