目录H++e进入呼吸链彻底氧化生成H2O的同时ADP偶联磷酸化生成ATP。NADH+H+H2O、2.5ATP[O]H2O、1.5ATPFADH2[O]三羧酸循环和氧化磷酸化目录第6章生物氧化BiologicalOxidation目录物质在生物体内进行氧化称生物氧化(biologicaloxidation),主要指糖、脂肪、蛋白质等在体内分解时逐步释放能量,最终生成CO2和H2O的过程。糖脂肪蛋白质CO2和H2OO2能量ADP+PiATP热能生物氧化的概念目录生物氧化与体外氧化之相同点生物氧化中物质的氧化方式有加氧、脱氢、失电子,遵循氧化还原反应的一般规律。物质在体内外氧化时所消耗的氧量、最终产物(CO2,H2O)和释放能量均相同。目录条件:是在细胞内温和的环境中(体温,pH接近中性)进行过程:在一系列酶的催化下逐步进行,能量逐步释放有利于机体捕获能量,提高ATP生成的效率方式:脱氢(加水脱氢)产物:代谢物脱下的氢与氧结合产生H2O,有机酸脱羧产生CO2*生物氧化与体外氧化之不同点生物氧化体外氧化高温或高压能量是突然释放的产生的CO2、H2O由物质中的碳和氢直接与氧结合生成目录糖原三酯酰甘油蛋白质葡萄糖脂酸+甘油氨基酸乙酰CoATAC2H呼吸链H2OADP+PiATPCO2生物氧化的一般过程目录第一节生成ATP的氧化磷酸化体系TheOxidativePhosphorylationSystemwithATPProducing目录指多种酶或辅酶按照一定的顺序排列在线粒体内膜上,可通过连锁的氧化还原反应,将代谢物脱下的氢和电子逐步传递,最终传递给氧生成水。这一系列酶和辅酶组成的传递链称为呼吸链(respiratorychain)又称电子传递链(electrontransferchain)。一、呼吸链定义递氢体和电子传递体(2H=2H++2e)组成目录线粒体的结构呼吸链目录酶复合体是线粒体内膜氧化呼吸链的天然存在形式,所含各组分具体完成电子传递过程。电子传递过程释放的能量驱动H+移出线粒体内膜,转变为跨内膜H+梯度的能量,再用于ATP的生物合成。(一)氧化呼吸链由4种具有传递电子能力的复合体组成目录ⅢⅠⅡⅣF0F1CytcQNADH+H+NAD+延胡索酸琥珀酸H+1/2O2+2H+H2OADP+PiATP4H+2H+4H+胞液侧基质侧++++++++++---------目录人线粒体呼吸链复合体复合体酶名称质量(kD)多肽链数功能辅基含结合位点复合体ⅠNADH-泛醌还原酶85039FMN,Fe-SNADH(基质侧)CoQ(脂质核心)复合体Ⅱ琥珀酸-泛醌还原酶1404FAD,Fe-S琥珀酸(基质侧)CoQ(脂质核心)复合体Ⅲ泛醌-细胞色素C还原酶25011血红素bL,bH,c1,Fe-SCytc(膜间隙侧)复合体Ⅳ细胞色素C氧化酶16213血红素a,a3,CuA,CuBCytc(膜间隙侧)泛醌和Cytc不包含在上述四种复合体中。目录ⅢⅠⅡⅣCytcQNADH+H+NAD+延胡索酸琥珀酸1/2O2+2H+H2O胞液侧基质侧线粒体内膜e-e-e-e-e-呼吸链中各组份的排列顺序目录复合体Ⅰ又称NADH-泛醌还原酶。组成:黄素蛋白,辅基:FMN铁硫蛋白,辅基:Fe-S功能:将电子从NAD+传递给泛醌。复合体Ⅰ电子传递:NADH→FMN→Fe-S→CoQ→Fe-S→CoQ每传递2个电子可将4个H+从内膜基质侧泵到胞浆侧,复合体Ⅰ有质子泵功能。1、复合体Ⅰ作用是将NADH+H+中的电子传递给泛醌(ubiquinone)目录NAD+和NADP+的结构R=H:NAD+;R=H2PO3:NADP+目录NAD+(NADP+)和NADH(NADPH)相互转变氧化还原反应时变化发生在五价氮和三价氮之间。目录FMN结构中含核黄素,发挥功能的部位是异咯嗪环,氧化还原反应时不稳定中间产物是FMN·。在可逆的氧化还原反应中显示3种分子状态,属于单、双电子传递体。目录铁硫蛋白中辅基铁硫中心(Fe-S)含有等量铁原子和硫原子,其中一个铁原子可进行Fe2+Fe3++e反应传递电子。属于单电子传递体。Ⓢ表示无机硫目录铁硫蛋白SS无机硫半胱氨酸硫目录泛醌(辅酶Q,CoQ,Q):由多个异戊二烯连接形成较长的疏水侧链(人CoQ10),氧化还原反应时可生成中间产物半醌型泛醌。内膜中可移动电子载体,在各复合体间募集并穿梭传递还原当量H和电子。在电子传递和质子移动的偶联中起着核心作用。目录泛醌(辅酶Q,CoQ,Q)总结:•结构:1.含有多个异戊二烯侧链的醌类化合物,人体:CoQ102.脂溶性物质3.是电子传递体中唯一可移动的非蛋白质电子载体•作用:递氢体•递氢机制:是多种底物进入呼吸链的中心点目录复合体Ⅰ的功能NADH+H+NAD+FMNFMNH2还原型Fe-S氧化型Fe-SQQH2目录复合体Ⅱ是三羧酸循环中的琥珀酸脱氢酶,又称琥珀酸-泛醌还原酶。组成:黄素蛋白,辅基:FAD铁硫蛋白,辅基:Fe-S功能:将电子从琥珀酸传递给泛醌。电子传递:琥珀酸→FAD→几种Fe-S→CoQ复合体Ⅱ没有H+泵的功能。2、复合体Ⅱ功能是将电子从琥珀酸传递到泛醌。目录复合体II的功能目录3、复合体Ⅲ功能是将电子从还原型泛醌传递给细胞色素c。复合体Ⅲ又叫泛醌-细胞色素C还原酶,细胞色素b-c1复合体,含有细胞色素b(b562,b566)、细胞色素c1和一种可移动的铁硫蛋白(Rieskeprotein)。功能:将电子从泛醌传递给细胞色素c。泛醌从复合体Ⅰ、Ⅱ募集还原当量和电子并穿梭传递到复合体Ⅲ。电子传递过程:CoQH2→(CytbL→CytbH)→Fe-S→Cytc1→Cytc目录复合体Ⅲ的功能目录细胞色素(cytochrome,Cyt)定义:细胞色素是一类以铁卟啉为辅基的催化电子传递的酶类,均有特殊的吸收光谱而呈现颜色。分类:Cyta:Cyta、Cyta3Cytb:Cytb562、Cytb566、Cytb560Cytc:Cytc、Cytc1区别:①铁卟啉辅基侧链不同②铁卟啉辅基与酶蛋白连接方式不同目录目录复合体Ⅲ的电子传递通过“Q循环”实现。复合体Ⅲ每传递2个电子向内膜胞浆侧释放4个H+,复合体Ⅲ也有质子泵作用。Cytc是呼吸链唯一水溶性球状蛋白,不包含在复合体中。将获得的电子传递到复合体Ⅳ。目录复合体Ⅳ又称细胞色素C氧化酶。功能:将电子从细胞色素c传递给氧。电子传递:Cytc→CuA→Cyta→Cyta3–CuB→O2Cyta3–CuB形成活性双核中心,将电子传递给O2。复合体Ⅳ每2个电子传递过程使2个H+跨内膜向胞浆侧转移。具有质子泵的功能。4、复合体Ⅳ将电子从细胞色素C传递给氧目录复合体Ⅳ的电子传递过程目录ⅢⅠⅡⅣF0F1CytcQNADH+H+NAD+延胡索酸琥珀酸H+1/2O2+2H+H2OADP+PiATP4H+2H+4H+胞液侧基质侧++++++++++---------目录标准氧化还原电位拆开和重组特异抑制剂阻断还原状态呼吸链缓慢给氧(二)氧化呼吸链组分按氧化还原电位由低到高的顺序排列由以下实验确定:目录呼吸链中各种氧化还原对的标准氧化还原电位氧化还原对E0‘(V)氧化还原对E0‘(V)NAD+/NADN+H+-0.32Cytc1Fe3+/Fe2+0.22FMN/FMNH2-0.219CytcFe3+/Fe2+0.254FAD/FADH2-0.219CytaFe3+/Fe2+0.29CytbL(bH)Fe3+/Fe2+0.05(0.10)Cyta3Fe3+/Fe2+0.35Q10/Q10H20.061/2O2/H2O0.816目录1、NADH氧化呼吸链NADH→复合体Ⅰ→Q→复合体Ⅲ→Cytc→复合体Ⅳ→O22、琥珀酸(FADH2)氧化呼吸链琥珀酸→复合体Ⅱ→Q→复合体Ⅲ→Cytc→复合体Ⅳ→O2目录NADHFMN(Fe-S)琥珀酸FAD(Fe-S)CoQCytb→Cytc1→CytcCytaa3O2NADH氧化呼吸链FADH2氧化呼吸链目录二、氧化磷酸化将氧化呼吸链释能与ADP磷酸化生成ATP偶联ATP生成方式氧化磷酸化:主要方式底物水平磷酸化目录氧化磷酸化(oxidativephosphorylation)是指在呼吸链电子传递过程中偶联ADP磷酸化,生成ATP,又称为偶联磷酸化。底物水平磷酸化(substratelevelphosphorylation)与脱氢或脱水反应偶联,底物分子内部能量重新分布,生成高能键,使ADP(GDP)磷酸化生成ATP(GTP)的过程。目录(一)氧化磷酸化偶联部位在复合体Ⅰ、Ⅲ、Ⅳ内根据P/O比值自由能变化:⊿Gº'=-nF⊿Eº'氧化磷酸化偶联部位:复合体Ⅰ、Ⅲ、Ⅳ目录线粒体离体实验测得的一些底物的P/O比值底物呼吸链的组成P/O比值可能生成的ATP数β-羟丁酸NAD+→复合体Ⅰ→CoQ→复合体Ⅲ2.53→Cytc→复合体Ⅳ→O2琥珀酸复合体Ⅱ→CoQ→复合体Ⅲ1.52→Cytc→复合体Ⅳ→O2抗坏血酸Cytc→复合体Ⅳ→O20.881细胞色素c(Fe2+)复合体Ⅳ→O20.61-0.6811、P/O比值指氧化磷酸化过程中,每消耗1/2摩尔O2所生成ATP的摩尔数(或一对电子通过氧化呼吸链传递给氧所生成ATP分子数)。目录2、自由能变化根据热力学公式,pH7.0时标准自由能变化(△G0′)与还原电位变化(△E0′)之间有以下关系:n为传递电子数;F为法拉第常数(96.5kJ/mol·V)△G0′=-nF△E0′目录电子传递链自由能变化区段电位变化(⊿Eº′)自由能变化⊿Gº′=-nF⊿Eº′能否生成ATP(⊿Gº′是否大于30.5KJ)Cytaa3~O20.53V102.3KJ/mol能NAD+~CoQ0.36V69.5KJ/mol能CoQ~Cytc0.21V40.5KJ/mol能目录ATPATPATP氧化磷酸化偶联部位NADHFMN(Fe-S)琥珀酸FAD(Fe-S)CoQCytb→Cytc1→CytcCytaa3O2目录(二)氧化磷酸化偶联机制是产生跨线粒体内膜的质子梯度1、化学渗透假说(chemiosmotichypothesis)电子经呼吸链传递时,可将质子(H+)从线粒体内膜的基质侧泵到内膜胞浆侧,产生膜内外质子电化学梯度储存能量。当质子顺浓度梯度回流时驱动ADP与Pi生成ATP。目录氧化磷酸化依赖于完整封闭的线粒体内膜;线粒体内膜对H+、OH-、K+、Cl-离子是不通透的;电子传递链可驱动质子移出线粒体,形成可测定的跨内膜电化学梯度;增加线粒体内膜外侧酸性可导致ATP合成,而线粒体内膜加入使质子通过物质可减少内膜质子梯度,结果电子虽可以传递,但ATP生成减少。化学渗透假说已经得到广泛的实验支持。目录线粒体基质线粒体膜++++----H+O2H2OH+e-ADP+PiATP化学渗透假说简单示意图ⅢⅠⅡⅣF0F1CytcQNADH+H+NAD+延胡索酸琥珀酸H+1/2O2+2H+H2OADP+PiATP4H+2H+4H+胞液侧基质侧++++++++++---------电子传递过程复合体Ⅰ(4H+)、Ⅲ(4H+)和Ⅳ(2H+)有质子泵功能。目录(三)质子顺梯度回流释放能量被ATP合酶利用催化ATP合成F1:亲水部分(动物:α3β3γδε亚基复合体,OSCP、IF1亚基),线粒体内膜的基质侧颗粒状突起,催化ATP合成。F0:疏水部分(ab2c9~12亚基,动物还有其他辅助亚基),镶嵌在线粒体内膜中,形成跨内膜质子通道。ATP合酶(复合体Ⅴ)结构组成目录ATP合酶组成可旋转的发动机样结构F0的2个b亚基的一端锚定F1的α亚基,另一端通过δ和α3β3稳固结合,使a、b2和α3β3、δ亚基组成稳定的定子部分。部分γ和ε亚基共同形成穿过α3β3间中轴,γ还与1个β亚基疏松结合作用,下端与嵌入内膜的c亚基环紧密结合。c亚基环、γ和ε亚基组成转子部分。质子顺梯度向基质回流时,转子部分相对定子部分旋转,使ATP合酶利用释放的能量合