人教新课标14.3因式分解14.3.2完全平方公式(2)一、新课引入试计算:9992+1998+12×999×1=(999+1)2=106此处运用了什么公式?完全平方公式逆用就像平方差公式一样,完全平方公式也可以逆用,从而进行一些简便计算与因式分解。即:2222bababa完全平方式的特点:1、必须是三项式(或可以看成三项的)2、有两个同号的平方项3、有一个乘积项(等于平方项底数的±2倍)简记口诀:首平方,尾平方,首尾两倍在中央。222baba二、完全平方式222首首尾尾2ab2ab222aabb222aabb现在我们把这个公式反过来很显然,我们可以运用以上这个公式来分解因式了,我们把它称为“完全平方公式”我们把以上两个式子叫做完全平方式222aabb222aabb“头”平方,“尾”平方,“头”“尾”两倍中间放.1、回答:下列各式是不是完全平方式22222222222122234446154624ababxyxyxxyyaabbxxaabb是是是否是否多项式是否是完全平方式a、b各表示什么表示为:表示为或形式222baba2.填写下表:962xx1442yy241a4122xx229124xxyy9)2(6)2(2yxyx2)(ba2)(ba22332xx2211)2(2)2(yy2233)2(2)2(yxyx2)3(x2)12(y2)32(yx是是不是是不是不是a表示:xb表示:3a表示:2yb表示:1a表示:2x+yb表示:33、请补上一项,使下列多项式成为完全平方式222222224221_______249_______3______414_______452______xyabxyabxxy2xy12ab4xyab4y例题:把下列式子分解因式4x2+12xy+9y22233222yyxx223xy222首首尾尾=(首±尾)2三、新知识或新方法运用·例5分解因式:(1)16x2+24x+9分析:在(1)中,16x2=(4x)2,9=32,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2+24x+9=(4x)2+2·4x·3+32a22abb2+·+解:(1)16x2+24x+9=(4x)2+2·4x·3+32=(4x+3)2.三、新知识或新方法运用例5分解因式:(2)–x2+4xy–4y2.解:(2)–x2+4xy-4y2=-(x2-4xy+4y2)=-[x2-2·x·2y+(2y)2]=-(x-2y)2三、新知识或新方法运用例6:分解因式:(1)3ax2+6axy+3ay2;(2)(a+b)2-12(a+b)+36.分析:在(1)中有公因式3a,应先提出公因式,再进一步分解。解:(1)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2(2)(a+b)2-12(a+b)+36=(a+b)2-2·(a+b)·6+62=(a+b-6)2.三、新知识或新方法运用1:如何用符号表示完全平方公式?a2+2ab+b2=(a+b)2,a2-2ab+b2(a-b)2.2:完全平方公式的结构特点是什么?四、小结完全平方式的特点:1、必须是三项式(或可以看成三项的)2、有两个同号的平方项3、有一个乘积项(等于平方项底数的±2倍)简记口诀:首平方,尾平方,首尾两倍在中央。练习P1191.下列多项式是不是完全平方式?为什么?(1)a2-4a+4;(2)1+4a2;(3)4b2+4b-1;(4)a2+ab+b2.2.分解因式:(p119)(1)x2+12x+36;(2)-2xy-x2-y2;(3)a2+2a+1;(4)4x2-4x+1;(5)ax2+2a2x+a3;(6)-3x2+6xy-3y2.思考题:1、多项式:(x+y)2-2(x2-y2)+(x-y)2能用完全平方公式分解吗?2、在括号内补上一项,使多项式成为完全平方式:X4+4x2+()2.()x64x3-4x34=(x+y)2-2(x+y)(x-y)+(x-y)2=(x+y-x+y)2=(2y)4=4y21.(x+y)2-2(x2-y2)+(x-y)21—16课本P:119习题14.3第3、9题。五、作业