直线与圆的位置关系(复习)复习要求1.会用代数法或几何法判定点、直线与圆的位置关系;2.掌握圆的几何性质,通过数形结合法解决圆的切线、直线被圆截得的弦长等直线与圆的综合问题,体会用代数法处理几何问题的思想.直线与圆的位置关系:设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.方法位置关系几何法代数法相交drΔ0相切d=rΔ=0相离drΔ0[难点正本疑点清源]1.直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的.2.计算直线被圆截得的弦长的常用方法几何方法:运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.1..若圆x2+y2=1与直线y=kx+2没有公共点,则实数k的取值范围为__________.2.从圆x2-2x+y2-2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为________.3.(2015·重庆)过原点的直线与圆x2+y2-2x-4y+4=0相交所得弦的长为2,则该直线的方程为____________题型一直线与圆的位置关系例1已知直线l:y=kx+1,圆C:(x-1)2+(y+1)2=12.(1)试证明:不论k为何实数,直线l和圆C总有两个交点;(2)求直线l被圆C截得的最短弦长.(2015·安徽改编)若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是__________.题型二圆的切线问题例2已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.(1)求过M点的圆的切线方程;(2)若直线ax-y+4=0与圆相切,求a的值;(3)若直线ax-y+4=0与圆相交于A,B两点,且弦AB的长为23,求a的值.探究提高求过一点的圆的切线方程,首先要判断此点是否在圆上.若在圆上,该点为切点;若不在圆上,切线应该有两条,设切线的点斜式方程,用待定系数法求解.注意,需考虑无斜率的情况.求弦长问题,要充分运用圆的几何性质.已知点A(1,a),圆x2+y2=4.(a0)若过点A的圆的切线只有一条,求a的值及切线方程;方法与技巧1.过圆上一点(x0,y0)的圆的切线方程的求法先求切点与圆心连线的斜率k,由垂直关系知切线斜率为-1k,由点斜式方程可求切线方程.若切线斜率不存在,则由图形写出切线方程x=x0.2.过圆外一点(x0,y0)的圆的切线方程的求法(1)几何方法:当斜率存在时,设为k,切线方程为y-y0=k(x-x0),即kx-y+y0-kx0=0.由圆心到直线的距离等于半径,即可得出切线方程.(2)代数方法:设切线方程为y-y0=k(x-x0),即y=kx-kx0+y0,代入圆方程,得一个关于x的一元二次方程,由Δ=0,求得k,切线方程即可求出.3.圆的弦长的求法(1)几何法:设圆的半径为r,弦心距为d,弦长为l,则l22=r2-d2.(2)代数法:设直线与圆相交于A(x1,y1),B(x2,y2)两点,两点间距离公式。失误与防范1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.基础训练1.若过点A(a,a)可作圆x2+y2-2ax+a2+2a-3=0的两条切线,则实数a的取值范围为______________.2.若直线y=x+4与圆(x-a)2+(y-3)2=8相切,则a=___________.3.设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是____________.4.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为________.5.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为23,则a=________.6.直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M,N两点,若MN≥23,则k的取值范围是______________.