初中数学公式定理大全每一个公式定理进行细分,帮助同学们更全面的理解的运用每一个数学公式与定理。定理点、线、角点、线、角点的定理:过两点有且只有一条直线点的定理:两点之间线段最短角的定理:同角或等角的补角相等角的定理:同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短平等定理平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补三角形内角定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°推论1:直角三角形的两个锐角互余推论2:三角形的一个外角等于和它不相邻的两个内角的和推论3:三角形的一个外角大于任何一个和它不相邻的内角全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等角平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合推论3:等边三角形的各角都相等,并且每一个角都等于60°等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)推论1:三个角都相等的三角形是等边三角形推论2有一个角等于60°的等腰三角形是等边三角形对称定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称直角三角形定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形多边形内角和多边形内角和多边形内角和定理:四边形的内角和等于360°四边形的外角和等于360°多边形内角和定理:n边形的内角的和等于(n-2)×180°推论:任意多边的外角和等于360°平行四边形平行四边形性质定理1:平行四边形的对角相等平行四边形性质定理2:平行四边形的对边相等推论:夹在两条平行线间的平行线段相等平行四边形性质定理3:平行四边形的对角线互相平分平行四边形判定定理1:两组对角分别相等的四边形是平行四边形平行四边形判定定理2:两组对边分别相等的四边形是平行四边形平行四边形判定定理3:对角线互相平分的四边形是平行四边形平行四边形判定定理4:一组对边平行相等的四边形是平行四边形矩形矩形性质定理1:矩形的四个角都是直角矩形性质定理2:矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形矩形判定定理2:对角线相等的平行四边形是矩形菱形菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形正方形正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角中心对称定理1:关于中心对称的两个图形是全等的定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称等腰梯形等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边中位线三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h相似三角形相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理1:两角对应相等,两三角形相似(ASA)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比性质定理2:相似三角形周长的比等于相似比性质定理3:相似三角形面积的比等于相似比的平方三角形函数任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值圆12不共线的三点确定一个圆经过一点可以作无数个圆经过两点也可以作无数个圆,且圆心都在连结这两点的线段的垂直平分线上定理:过不共线的三个点,可以作且只可以作一个圆推论:三角形的三边垂直平分线相交于一点,这个点就是三角形的外心三角形的三条高线的交点叫三角形的垂心1.3垂径定理圆是中心对称图形;圆心是它的对称中心圆是周对称图形,任一条通过圆心的直线都是它的对称轴定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧1.4弧、弦和弦心距定理:在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等二圆与直线的位置关系2.1圆与直线的位置关系如果一条直线和一个圆没有公共点,我们就说这条直线和这个圆相离如果一条直线和一个圆只有一个公共点,我们就说这条直线和这个圆相切,这条直线叫做圆的切线,这个公共点叫做它们的切点定理:经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线定理:圆的切线垂直经过切点的半径推论1:经过圆心且垂直于切线的直线必经过切点推论2:经过切点且垂直于切线的直线必经过圆心如果一条直线和一个圆有两个公共点,我们就说,这条直线和这个圆相交,这条直线叫这个圆的割线,这两个公共点叫做它们的交点直线和圆的位置关系只能由相离、相切和相交三种2.2三角形的内切圆如果一个多边形的各边所在的直线,都和一个圆相切,这个多边形叫做圆的外切多边形,这个圆叫做多边形的内切圆定理:三角形的三个内角平分线交于一点,这点是三角形的内心三角形一内角评分线和其余两内角的外角评分线交于一点,这一点叫做三角形的旁心。以旁心为圆心可以作一个圆和一边及其他两边的延长线相切,所作的圆叫做三角形的旁切圆2.3切线长定理定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角2.4圆的外切四边形定理:圆的外切四边形的两组对边的和相等定理:如果四边形两组对边的和相等,那么它必有内切圆三圆与圆的位置关系3.1两圆的位置关系在平面内,不重合的两圆。它们的位置关系,有以下五种情况:外离、外切、相交、内切、外切经过两个圆的圆心的直线,叫做两圆的连心线,两个圆心之间的距离叫做圆心距定理:两圆的连心线是两圆的对称轴,并且两圆相切时,它们切点在连心线上(1)两圆外离dR+r(2)两圆外切d=R+r(3)两圆相交R-rdR+r(Rr)(4)两圆内切d=R-r(Rr)(5)两圆内含dR-r(Rr)特殊情况,两圆是同心圆d=03.2两圆的公切线定理:两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等比例性质(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b公式圆正n边形的每个内角都等于(n-2)×180°/n弧长计算公式:L=n兀R/180扇形面积公式:S扇形=n兀R^2/360=LR/2内公切线长=d-(R-r)外公切线长=d-(R+r)①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)定理相交两圆的连心线垂直平分两圆的公共弦定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4弧长计算公式:L=n兀R/180扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)因式分解公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)平方差公式:a平方-b平方=(a+b)(a-b)完全平方和公式:(a+b)平方=a平方+2ab+b平方完全平方差公式:(a-b)平方=a平方-2ab+b平方两根式:ax^2+bx+c=a[x-(-b+√(b^2-4ac))/2a][x-(-b-√(b^2-4ac))/2a]两根式立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2)立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.一元二次方程一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac0注:方程有两个不等的实根b2-4ac0注:方程没有实根,有共轭复数根三角不等式三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b=-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|等差数列某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13