新世纪文化教育1“七年级数学”(上册)行程问题复习与小结一元一次方程应用题专题讲解【解题思路】1、审——读懂题意,找出等量关系。2、设——巧设未知数。3、列——根据等量关系列方程。4、解——解方程,求未知数的值。5、答——检验,写答案(注意写清单位和答话)。6、练——勤加练习,熟能生巧。触类旁通,举一反三。第一讲行程问题【基本关系式】(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速=2水速;顺速+逆速=2船速顺水的路程=逆水的路程注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。常见的还有:相背而行;环形跑道问题。【经典例题】例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。(1)分析:相遇问题,画图表示为:等量关系是:慢车走的路程+快车走的路程=480公里。解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480新世纪文化教育2解这个方程,230x=390,23161x答:快车开出23161小时两车相遇(2)分析:相背而行,画图表示为:等量关系是:两车所走的路程和+480公里=600公里。解:设x小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120∴x=2312答:2312小时后两车相距600公里。(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。解:设x小时后两车相距600公里,由题意得,(140-90)x+480=60050x=120∴x=2.4答:2.4小时后两车相距600公里。(4)分析:追及问题,画图表示为:等量关系为:快车的路程=慢车走的路程+480公里。解:设x小时后快车追上慢车。由题意得,140x=90x+480解这个方程,50x=480∴x=9.6答:9.6小时后快车追上慢车。(5)分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。解:设快车开出x小时后追上慢车。由题意得,140x=90(x+1)+48050x=570∴x=11.4答:快车开出11.4小时后追上慢车。例2.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。A、C两地之间的路程为10千米,求A、B两地之间的路程。分析:这属于行船问题,这类问题中要弄清:(1)顺水速度=船在静水中的速度+水流速度;(2)逆水速度=船在静水中的速度-水流速度。相等关系为:顺流航行的时间+逆流航行的时间=7小时。解:设A、B两码头之间的航程为x千米,则B、C间的航程为(x-10)千米,由题意得,5.327281082xxx解这个方程得答:A、B两地之间的路程为32.5千米。一、相遇问题:若甲乙分别从两地同时出发相向而行,则相遇时甲乙路程之和等于两地的距离。甲乙600甲乙甲乙新世纪文化教育3例1、甲、乙两人相距60米,。甲每秒走3米,乙每秒走2米,(1)如果甲、乙分别从A、B地同时出发,相向而行,那么几秒后两人相遇?(2)如果甲先走10米,甲、乙分别从A、B地出发,相向而行,那么几秒后两人相遇?(3)甲、乙分别从A、B地同时出发,相向而行,那么几秒后两人相距20米?练习:1、甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时后相遇。已知甲每小时比乙每小时多走2千米,求甲,乙两人的速度。2.甲、乙两人分别从相距140千米的A,B两地同时出发,同向而行,甲的速度为40千米/小时,乙的速度为20千米/小时。经过多少小时甲乙相遇?3、甲、乙两人同时同地同向而行,甲的速度是4千米/小时,乙的速度比甲慢,半小时后,甲调头往回走,再走10分钟与乙相遇,求乙的速度。二、追及问题:若甲乙分别从两地同时出发同向而行,则甲追上乙时甲乙路程之差等于两地的距离。例2、甲、乙两人分别从相距140千米的A,B两地同时出发,甲的速度为40千米/小时,乙的速度为20千米/小时(1)若同时出发同向而行,乙在前甲在后,经过多少小时甲追上乙?(2)如果同时出发同向而行,经过多少小时两人相距20千米?新世纪文化教育4练习:4、甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米然后奋力去追,求几秒后甲追上乙?5、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?三、航行问题顺水速度=静水速度+水流速度逆水速度=静水速度—水流速度例3、一艘轮船从甲地顺流而下8小时到达乙地,原路返回需要12小时才能到达甲地。已知水流速度是每小时3千米,求甲、乙两地的距离?练习:6.一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?7.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。四、环形跑道问题(1)甲乙从同一地点同时同向出发,甲乙路程之差等于环形跑道的周长(2)甲乙从同一地点同时背向出发,甲乙路程之和等于环形跑道的周长例4.环形跑道400米,小明跑步每秒行9米,爸爸骑车每秒行16米,两人同时同地反向而行,经过几秒新世纪文化教育5两人相遇?.练习;8、甲、乙两人在400米的环行形跑道上练习跑步,甲每秒跑5.5米,乙每秒跑4.5米。(1)甲、乙同时同地同向出发,经过多长时间二人首次相遇?(2)甲、乙同时同地背向出发,还要多长时间首次相遇?(3)乙先跑10米,甲再和乙同向出发,还要多长时间首次相遇?(4)乙先跑10米,甲再和乙背向出发,还要多长时间首次相遇?(5)甲先跑10米,乙再和甲同地、同向出发,还要多长时间首次相遇?备选练习题1.甲、乙二人从相距91千米的A、B两地相向而行,甲先出发1小时,二人在乙出发4小时后相遇,而甲每小时比乙快2千米,求甲、乙二人的速度?新世纪文化教育62.某人骑车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米,虽然速度增加到了每小时12千米,但比去时还多用了10分钟,求甲、乙两地的距离?3.一只船从一个码头顺流而下,再逆流而上,打算在8小时内回到原来出发的码头。已知这只船在静水中的速度是10千米/时,水流的速度是2千米/时,那么这只船最多走多少千米就必须返回,才能在8小时内回到原来出发的码头?4.一列匀速行驶的火车用26秒种通过了一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了一个长96米的隧道,求这列火车的长度?7..一列客车长200m,一列货车长280m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?8.与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6Km,骑自行车的人的速度是每小时10.8Km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车人的时间是26秒。(1)行人的速度为每秒多少米;(2)求这列火车的身长是多少米。新世纪文化教育79.一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度60公里/小时,我们的速度是5公里/小时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行这部分人。出发地到目的地的距离是60公里。问:步行者在出发后经多少时间与回头接他们的汽车相遇10.某人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?11.在800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,几分钟后第一次相遇?