上页下页结束返回首页问题?dxxex解决思路利用两个函数乘积的求导法则.设函数)(xuu和)(xvv具有连续导数,,vuvuuv,vuuvvu,dxvuuvdxvu.duvuvudv分部积分公式§3.分部积分法运用分部积分公式应注意u,dv的选取,其原则是:..2;.1容易求积要比原积分中容易求出从udvvduvdvdxv上页下页结束返回首页例1求积分.sinxdxx解(一)令,sinxu22xdxdxdvxdxxsinxdxxxxcos2sin222显然,选择不当,积分更难进行.vu,解(二)令,xuxdxdxdvcossinxdxxsin)cos(xxdxdxxxcoscos.sincosCxxx.duvuvudv2sin2xxd×上页下页结束返回首页例2求积分.2dxexx解,2xu,xxdedxedvdxexx222dxeexxx.)(22Cexeexxxx(再次使用分部积分法),xu总结,xxdedxedvxdex2dxxeexxx22xxdexex22)(22dxexeexxxx.cos,sin,.1axdxxaxdxxdxexmmaxm型如mxu令P210-3上页下页结束返回首页例3求积分.)1ln(dxxx解令,)1ln(xu)2(2xdxdxdvdxxx)1ln())1(ln(2)1ln(222xdxxxdxxxxx)1(2)1ln(2222)1ln(2xdxdxxx11)1(212)1ln(22xx上页下页结束返回首页dxxdxxxxx11211121)1ln(222)1ln(21)1(21)1ln(22xdxxxxcxxxxx)1ln(212141)1ln(222dxxx11)1(212)1ln(22xx上页下页结束返回首页例4求积分xdxx2tan解原式xdxxdxxdxxx22sec)1(sec,xu令cxxxxdxxxxxdxdxx|cos|lntantantantansec2xdxdxvdxtansec2则原式cxxxx2|cos|lntan2上页下页结束返回首页例5求积分.ln3xdxx解,lnxu,443xddxxdvxdxxln3dxxxx3441ln41.161ln4144Cxxx总结4ln4xdxxdxxxln4ln4144.ln,arctan.2xdxxxdxxmm型如.ln,arctanxuxu令上页下页结束返回首页dxxxxx)1(41arctan4244例6求积分xdxxarctan3解令,arctanxu)4(43xddxxdv)4(arctanarctan43xxdxdxxdxxxxxx2222411)1(2)1(41arctan4dxxdxdxxxx224114121)1(41arctan4cxxxxxarctan411214arctan434上页下页结束返回首页例7求积分.sinxdxex解xdxexsinxxdesin)(sinsinxdexexxxdxexexxcossinxxxdexecossin)coscos(sinxdexexexxxxdxexxexxsin)cos(sinxdxexsin.)cos(sin2Cxxex注意循环形式有些积分,经分部积分后,会重新出现所求的积分,其求解方法见以下两例:P211-7注:型如bxdxebxdxeaxaxcos,sin出现循环形式。上页下页结束返回首页例8求积分.)sin(lndxx解dxx)sin(ln)][sin(ln)sin(lnxxdxxdxxxxxx1)cos(ln)sin(ln)][cos(ln)cos(ln)sin(lnxxdxxxxdxxxxx)sin(ln)]cos(ln)[sin(lndxx)sin(ln.)]cos(ln)[sin(ln2Cxxx有些积分,经分部积分后,会重新出现所求的积分,其求解方法见以下两例:上页下页结束返回首页例9求积分.1arctan2dxxxx解,1122xxxdxxxx21arctan21arctanxxd)(arctan1arctan122xdxxxdxxxxx222111arctan1上页下页结束返回首页dxxxx2211arctan1令txtandxx211tdtt22sectan11tdtsecCtt)tanln(secCxx)1ln(2dxxxx21arctanxxarctan12.)1ln(2Cxx上页下页结束返回首页.sectan102xdxx求例(凑微分中讲过此种情况要用分部积分法解)xxdxdxxsectansectan2解,sectantanseclnsectan2xdxxxxxxxdxxxdxxxsectansecsectan2xdxxxx2secsecsectandxxxxx2tan1secsectanxxdxxtansecsectan上页下页结束返回首页移项解得.tanseclnsectan21sectan2Cxxxxxdxx.sectan102xdxx求例(凑微分中讲过此种情况要用分部积分法解)xxdxdxxsectansectan2解,sectantanseclnsectan2xdxxxxxx上页下页结束返回首页例12求积分dxxxexcos1)sin1(解原式dxxxxex)2(cos2)2cos2sin21(2dxxedxxexx)2tan()2(cos212dxxexdexx)2tan()2tan()2tan(xexdxxedxxexx)2tan()2tan(cxex)2tan(上页下页结束返回首页在积分的过程中,常要兼用换元法与分部积分法:.0,sin13adxx求例tdttdxxtxtx2sinsin2,于是,则设解(往下再用分部积分法求解.).1,214xdxexexx求例解首先设法去掉被积函数中的根式,为此,,,则令2ln2222txtetexx上页下页结束返回首页例15已知)(xf的一个原函数是2xe,求dxxfx)(.解dxxfx)()(xxdf,)()(dxxfxxf,)(2Cedxxfx),(2xfex且有,2)(2xxexfdxxfx)(dxxfxxf)()(222xex.2Cex上页下页结束返回首页例16求积分dxx2)(arcsin解(一)原式dxxxxxx2211arcsin2)(arcsindxxxxxx221arcsin2)(arcsin)1(arcsin2)(arcsin22xdxxx)(arcsin12arcsin12)(arcsin222xdxxxxxdxxxxxxx22221112arcsin12)(arcsincxxxxx2arcsin12)(arcsin22上页下页结束返回首页ttdtttdttttcos2sinsin2sin22tdtttttcos2cos2sin2ctttttsin2cos2sin2,arcsintx.1cos2xtcxxxxx2arcsin12)(arcsin22原式注:同一个题可能有多种积分法,具体使用哪种积分法,视情况选取合适的积分法。解(二),arcsintx令原式tddxtxsin,sin2sinsinsin22tdttttdt例16求积分dxx2)(arcsint1x21x上页下页结束返回首页内容小结分部积分公式xvuvuxvudd1.使用原则:xvuvd易求出,易积分2.使用经验:“反对幂指三”,前u后v3.题目类型:分部化简;循环解出;递推公式.cos,sin,)1(axdxxaxdxxdxexmmaxm型如.ln,arctan)2(xdxxxdxxmm型如.cos,sin)3(bxdxebxdxeaxax型如上页下页结束返回首页思考与练习1.下述运算错在哪里?应如何改正?xxxdsincosxxxdsincos1,1dsincosdsincosxxxxxx得0=1答:不定积分是原函数族,相减不应为0.求此积分的正确作法是用第一换元法.Cxsinln上页下页结束返回首页uexexuudd,例14.求解:令则原式,lnxuue34uueudueuud444uue434u212uu24240ue441ue4412ue4413ue4414ue4415原式=ue4414u3u243uu83323CCxxxxx323ln83ln43lnln412344可用表格法求多次分部积分微分积分上页下页结束返回首页2.求对比P354公式(128),(129)提示:)cos(bxa)sin(bxaa)cos(2bxaaxkek21xkexkek1上页下页结束返回首页作业P2124,5,9,14,18,20,21,22