卧式单面多轴钻孔组合机床动力滑台液压系统课程设计报告

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

..目录一明确液压系统的设计要求..........................................2二负载与运动分析..................................................2三负载图和速度图的绘制...........................................4四确定液压系统主要参数............................................54.1确定液压缸工作压力..........................................54.2计算液压缸主要结构参数......................................54.3绘制液压缸工况图............................................7五液压系统方案设计...............................................85.1选用执行元件................................................85.2速度控制回路的选择..........................................85.3选择快速运动和换向回路......................................95.4速度换接回路的选择..........................................95.5组成液压系统原理图.........................................105.5系统图的原理...............................................11六液压元件的选择................................................136.1确定液压泵的规格和电动机功率...............................136.2确定其它元件及辅件.........................................146.3主要零件强度校核...........................................16七液压系统性能验算..............................................177.1验算系统压力损失并确定压力阀的调整值.......................177.2油液温升验算...............................................18..一明确液压系统的设计要求要求设计一台卧式单面多轴钻孔组合机床动力滑台的液压系统。要求实现的动作顺序为:启动→加速→快进→减速→工进→快退→停止。液压系统的主要参数与性能要求如下:轴向切削力总和Fg=12700N,移动部件总重量G=20000N;行程长度400mm(其中工进行程100mm)快进、快退的速度为7m/min,工进速度(20~1000)mm/min,其中20mm/min为粗加工,1000mm/min为精加工;启动换向时间△t≤0.15s;该动力滑台采用水平放置的平导轨;静摩擦系数fs=0.2;动摩擦系数fd=0.1。液压系统的执行元件使用液压缸。二负载与运动分析负载分析中,暂不考虑回油腔的背压力,液压缸的密封装置产生的摩擦阻力在机械效率中加以考虑。因工作部件是卧式放置,重力的水平分力为零,这样需要考虑的力有:夹紧力,导轨摩擦力,惯性力。在对液压系统进行工况分析时,本设计实例只考虑组合机床动力滑台所受到的工作负载、惯性负载和机械摩擦阻力负载,其他负载可忽略。(1)工作负载FW工作负载是在工作过程中由于机器特定的工作情况而产生的负载,对于金属切削机床液压系统来说,沿液压缸轴线方向的切削力即为工作负载,即NFt12700(2)阻力负载fF阻力负载主要是工作台的机械摩擦阻力,分为静摩擦阻力和动摩擦阻力两部分。导轨的正压力等于动力部件的重力,设导轨的静摩擦力为fF,则静摩擦阻力NFfs4000200002.0动摩擦阻力NFfd2000200001.0(3)惯性负载最大惯性负载取决于移动部件的质量和最大加速度,其中最大加速度可通过工作台最大移动速度和加速时间进行计算。已知启动换向时间为0.05s,工作台最大移动速度,即快进、快退速度为4.5m/min,因此惯性负载可表示为NNtvF68.158515.060781.920000mm如果忽略切削力引起的颠覆力矩对导轨摩擦力的影响,并设液压缸的机械效率w=0.9,根据上述负载力计算结果,可得出液压缸在各个工况下所受到的..负载力和液压缸所需推力情况,如表1所示。表1液压缸总运动阶段负载表(单位:N)工况负载组成负载值F/N推力F/w/N启动fsFF40004444.44加速mfdFFF3585.683984.08快进fdFF20002222.22工进tfdFFF1470016333.33反向启动fsFF40004444.44加速mfdFFF3585.683984.08快退fdFF20002222.22制动mfdFFF414.32460.36..三负载图和速度图的绘制根据负载计算结果和已知的个阶段的速度,可绘制出工作循环图如图1(a)所示,所设计组合机床动力滑台液压系统的速度循环图可根据已知的设计参数进行绘制,已知快进和快退速度m/min731vv、快进行程L1=400-100=300mm、工进行程L2=100mm、快退行程L3=400mm,工进速度mm/min502v。快进、工进和快退的时间可由下式分析求出。快进svLt57.2607103003111工进svLt1206005.0101003222快退ssvlvlt61000740060100073006033111根据上述已知数据绘制组合机床动力滑台液压系统绘制负载图(F-t)如图1(b),速度循环图如图1(c)所示。图1速度负载循环图a)工作循环图b)负载速度图c)负载速度图..四确定液压系统主要参数4.1确定液压缸工作压力由表2和表3可知,组合机床液压系统在最大负载约为17000N时宜取3MP。表2按负载选择工作压力负载/KN55~1010~2020~3030~5050工作压力/MPa0.8~11.5~22.5~33~44~5≥5表3各种机械常用的系统工作压力机械类型机床农业机械小型工程机械建筑机械液压凿岩机液压机大中型挖掘机重型机械起重运输机械磨床组合机床龙门刨床拉床工作压力/MPa0.8~23~52~88~1010~1820~324.2计算液压缸主要结构参数由于工作进给速度与快速运动速度差别较大,且快进、快退速度要求相等,从降低总流量需求考虑,应确定采用单杆双作用液压缸的差动连接方式。通常利用差动液压缸活塞杆较粗、可以在活塞杆中设置通油孔的有利条件,最好采用活塞杆固定,而液压缸缸体随滑台运动的常用典型安装形式。这种情况下,应把液压缸设计成无杆腔工作面积1A是有杆腔工作面积2A两倍的形式,即活塞杆直径d与缸筒直径D呈d=0.707D的关系。工进过程中,当孔被钻通时,由于负载突然消失,液压缸有可能会发生前冲的现象,因此液压缸的回油腔应设置一定的背压(通过设置背压阀的方式),选取此背压值为p2=0.8MPa。快进时液压缸虽然作差动连接(即有杆腔与无杆腔均与液压泵的来油连接),但连接管路中不可避免地存在着压降p,且有杆腔的压力必须大于无杆腔,估算时取p0.5MPa。快退时回油腔中也是有背压的,这时选取被压值2p=0.6MPa。工进时液压缸的推力计算公式为11221112/(/2)mFApApApAp,式中:F——负载力m——液压缸机械效率A1——液压缸无杆腔的有效作用面积A2——液压缸有杆腔的有效作用面积p1——液压缸无杆腔压力..p2——液压有无杆腔压力因此,根据已知参数,液压缸无杆腔的有效作用面积可计算为26211m006282.028.031033.163332ppFAm液压缸缸筒直径为mmAD46.8941mm由于有前述差动液压缸缸筒和活塞杆直径之间的关系,d=0.707D,因此活塞杆直径为d=0.707×89.46=63.32mm,根据GB/T2348—1993对液压缸缸筒内径尺寸和液压缸活塞杆外径尺寸的规定,圆整后取液压缸缸筒直径为D=110mm,活塞杆直径为d=80mm。此时液压缸两腔的实际有效面积分别为:242110585.634mDA242221043.324mdDA工作台在快进过程中,液压缸采用差动连接,此时系统所需要的流量为min07.23v121LAAq快进工作台在快退过程中所需要的流量为min7.22vq32LA快退工作台在工进过程中所需要的流量为q工进=A1×v1’=0.318L/min根据上述液压缸直径及流量计算结果,进一步计算液压缸在各个工作阶段中的压力、流量和功率值,如表4所示。表4各工况下的主要参数值工况推力F’/N回油腔压力P2/MPa进油腔压力P1/MPa输入流量q/L.min-1输入功率P/Kw计算公式快进启动555601.54————212'1AApAFp121vAAqqpP1ppp12加速69492.311.81————快速27781.490.9922.730.375..工进277880.83.290.950.0521221'AApFp21vAqqpP1快退起动218000.49————2121'AApFP32vAqqpP1加速69490.62.84————快退27780.61.8220.020.607制动414.30.61.3————注:m/'FF。4.3绘制液压缸工况图并据表4可绘制出液压缸的工况图,如图2所示。图2组合机床液压缸工况图..五液压系统方案设计5.1选用执行元件因系统运动循环要求正向快进和工进,反向快退,且快进,快退速度相等,因此选用单活塞杆液压缸,快进时差动连接,无杆腔面积A1等于有杆腔面积A2的两倍。5.2速度控制回路的选择工况图表明,所设计组合机床液压系统在整个工作循环过程中所需要的功率较小,系统的效率和发热问题并不突出,因此考虑采用节流调速回路即可。虽然节流调速回路效率低,但适合于小功率场合,而且结构简单、成本低。该机床的进给运动要求有较好的低速稳定性和速度-负载特性,因此有三种速度控制方案可以选择,即进口节流调速、出口节流调速、限压式变量泵加调速阀的容积节流调速。钻镗加工属于连续切削加工,加工过程中切削力变化不大,因此钻削过程中负载变化不大,采用节流阀的节流调速回路即可。但由于在钻头钻入铸件表面及孔被钻通时的瞬间,存在负载突变的可能,因此考虑在工作进给过程中采用具有压差补偿的进口调速阀的调速方式,且在回油路上设置背压阀。由于选定了节流调速方案,所以油路采用开式循环回路,以提高散热效率,防止油液温升过高。从工况图中可以清楚地看到,在这个液压系统的工作循环内,液压要求油源交替地提供低压大流量和高压小流量的油液。而快进快退所需的时间1t和工进所需的时间2t分别为ssvlvlt61000740060100073006033111ssvlt120100005.010060222亦即是12tt=20因此从提高系统效率、节省能量角度来看,如果选用单个定量泵作为整个系统的油源,液压系统会长时间处于大流量溢流状态,从而造成能量的大量损失,这样的设计显然是不合理的。如果采用一个大流量定量泵和一个小流量定量泵双泵串联的供油方式,由双联泵组成的油源在工进和快

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功