七年级数学上册第一章丰富的图形世界2展开与折叠解展开与折叠题的策略素材北师大版教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1解展开与折叠题的策略展开------立体图形平面化;折叠------平面图形立体化,这一展一折正是平面和空间的相互转化,这类问题有时同学们感到非常棘手,这里介绍几种常用的解题思维策略,供参考.一、画直观图准确地画出直观图形,有利于平面与空间的相互转化.例1.如图1,在正方体两个相距最远的顶点处有一只苍蝇B和蜘蛛A,蜘蛛可从哪条最短的路径爬到苍蝇处?试说明你的理由.分析:我们可以借助正方体的展开图找到解题的办法,由于正方体的展开有不同的方法,因而从A到B可用6种不同的方法选取最短的路径,但每条路径都通过连接正方体两个顶点的棱的中点.解:因为蜘蛛只能在正方体的表面爬行,所以只要找到这个正方体的展开图,应用“两点之间,线段最短”就可确定最短路径(如图1).二、以静制动寻找折叠前后图形的不变量,往往就是解题的灵魂.例2.将一块正六边形硬纸片(图2(1)),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2(2)),需在每一个顶点处剪去一个四边形,例如图2(1)中的四边形AGA/H,那么∠GA/H的大小是度.解:折叠前A'H⊥AH,A'G⊥AG,折叠后这些垂直关系都没有发生变化,所以∠AHA'=∠AGA'=90°,又∠A为正六边形的内角,故∠A=120°,在四边形AGA'H中,图2(1)图2(2)2∠GA'H=360°-120°-2×90°=60°.三、抓特征量正确理解平面图形中的一些特征量,使问题得以顺利解决.例3.如图3(1),在正方形铁皮上剪下一个圆形和扇形,使之恰好围成图3(2)所示的一个圆锥模型.设圆的半径为r,扇形半径为R,则圆的半径与扇形半径之间的关系为().A.R=2rB.R=94rC.R=3rD.R=4r解:由题意得,欲使剪下的圆形和扇形恰好围成圆锥模型,圆周长必须等于扇形的弧长,有1224rR,即14rR,故选(D).四、动手操作在空间思维受阻的情况下,动手操作正是新课标、新理念的体现.例4.在正方体的表面画有如图4(1)所示的粗线,图4(2)是其展开图的示意图,但只在A面上画有粗线,那么将4(1)中剩余两个面中的粗线画入图4(2)中,画法正确的是(如果没把握,还可以动手试一试呦!).解:此题若展开空间想象,难度很大,倘若动手操作,先做一个如图4(2)所示的展开图,将其折叠成正方体,在正方体上画上如图4(1)所示的三条粗线,再展开后就得到如(A)所示的展开图,故选(A).A图4(2)A图4(1)

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功