1九年级上册数学期末试卷一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是()2.将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A.y=2(x-1)2-3B.y=2(x-1)2+3C.y=2(x+1)2-3D.y=2(x+1)2+33.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4B.5C.36D.65.一个半径为2cm的圆内接正六边形的面积等于()A.24cm2B.63cm2C.123cm2D.83cm26.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°7.函数mxxy822的图象上有两点),(11yxA,),(22yxB,若221xx,则()A.21yyB.21yyC.21yyD.1y、2y的大小不确定8.将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A.B.C.D.9.一次函数yaxb与二次函数2yaxbxc在同一坐标系中的图像可能是()第3题图第6题图第4题图2A.B.C.D.10.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是m.(结果不取近似值)A.3B.3根号3C.D.4二、填空题:11.抛物线322xxy的顶点坐标是12.如图,将△ABC的绕点A顺时针旋转得到△AED,点D正好落在BC边上.已知∠C=80°,则∠EAB=°.13.若函数221ymxx的图象与x轴只有一个公共点,则常数m的值是_______14.抛物线y=-x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.15.16、如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是__________(结果保留)16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是_________.三、解答下列各题17.解方程:(1)122xx(2)0)3(2)3(2xx第12题图第14题图318.已知关于x的一元二次方程2(31)30kxkx(0)k.(1)求证:无论k取何值,方程总有两个实数根;(2)若二次函数3)13(2xkkxy的图象与x轴两个交点的横坐标均为整数,且k为整数,求k的值.19.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC关于原点O逆时针旋转90°得到△A1B1C1;②△A1B1C1关于原点中心对称的△A2B2C2.(2)△A2B2C2中顶点B2坐标为.20、如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为________;(2)连接AD、CD,求⊙D的半径(结果保留根号)及扇形ADC的圆心角度数;(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径(结果保留根号).ABCyO421.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y箱与销售价x元/箱之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22、如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.23.如图,在矩形ABCD中,E是CD边上的点,且BABE,以点A为圆心、AD长为半径作⊙A交AB于点M,过点B作⊙A的切线BF,切点为F.(1)请判断直线BE与⊙A的位置关系,并说明理由;(2)如果10AB,5BC,求图中阴影部分的面积.FMEADCB523、已知:如图,抛物线y=−x2+bx+c与x轴、y轴分别相交于点A(−1,0)、B(0,3)两点,其顶点为D.(1)求这条抛物线的解析式;(2)若抛物线与x轴的另一个交点为E.求△ODE的面积;25.在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.-1BD-2OEA3yx