1图形的初步认识一、本章的知识结构图一、立体图形与平面图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。1、几何图形平面图形:三角形、四边形、圆等。主(正)视图---------从正面看2、几何体的三视图侧(左、右)视图-----从左(右)边看俯视图---------------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。(2)能根据三视图描述基本几何体或实物原型。3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面。体:几何体也简称体。(2)点动成线,线动成面,面动成体。例1(1)如图1所示,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的物体。(2)如图2所示,写出图中各立体图形的名称。图1图2解:(1)①与d类似,②与c类似,③与a类似,④与b类似。(2)①圆柱,②五棱柱,③四棱锥,④长方体,⑤五棱锥。例2如图3所示,讲台上放着一本书,书上放着一个粉笔盒,指出右边三个平面图形分别是左边立体图形的哪个视图。图3解:(1)左视图,(2)俯视图,(3)正视图练习1.下图是一个由小立方体搭成的几何体由上而看得到的视图,小正方形中的数字表示该位置小立方块的个数,则从正面看它的视图为()23.如图,下面三个正方体的六个面按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是()A.蓝、绿、黑B.绿、蓝、黑C.绿、黑、蓝D.蓝、黑、绿4.若如下平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值。5.一个物体从不同方向看的视图如下,画出该物体的立体图形。二、直线、射线、线段(一).直线、射线、线段的区别与联系:基本概念直线射线线段图形端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB;作直线a作射线AB作线段a;作线段AB;连接AB延长叙述不能延长反向延长射线AB延长线段AB;反向延长线段BA例4如图所示,回答下列问题。(1)图中有几条直线?用字母表示出来;(2)图中有几条射线?用字母表示出来;(3)图中有几条线段?用字母表示出来。解:(1)图中有1条直线,表示为直线AD(或直线AB,AC,BD,BC,CD);3(2)共有8条射线,能用字母表示的有射线AB,AC,AD,BC,BD,CD,不能用字母表示的有2条,(3)共有6条线段,表示为线段AB,AC,AD,BC,BD,CD。练习6、下列各直线的表示方法中,正确的是()A.直线AB.直线ABC.直线abD.直线Ab7、右图中有__________条线段,分别表示为______________。(二).直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;1、线段的性质两点的所有连线中,线段最短。简单地:两点之间,线段最短。2.画线段的方法(1)度量法(2)用尺规作图法3、线段的大小比较方法(1)度量法(2)叠合法4、点与直线的位置关系(1)点在直线上(2)点在直线外。练习:8.把一段弯曲的公路改为直道,可以缩短路程。其理由是:()(A)两点之间,线段最短(B)两点确定一条直线(C)线段有两个端点(D)线段可以比较大小9在同一平面上的三点A,B,C,(1)过任意两点做一条直线,则可作直线的条数为____________(2)过三个已知点的直线的条数为____________解:(1)如图所示,当A,B,C三点不共线时,过其中的每两点可以画一条直线,共可画出三条直线;当A,B,C三点在一条直线上时,经过每两点画出的直线重合为一条直线。(2)过三个已知点不一定能画出直线。当三个已知点在一条直线上时,可以画出一条直线;当三个已知点不在一条直线上时,不能画出直线。(三).两点距离的定义:连接两点间的线段的长度,叫做这两点的距离。练习:10、下列说法中,正确的是()A.射线比直线短B.两点确定一条直线C.经过三点只能作一条直线D.两点间的长度叫做两点间的距离11、线段AB=9cm,C是直线AB上的一点,BC=4cm,则AC=________.(四).线段中点:把一条线段分成两条相等的线段的点叫线段中点,如图:若点C是线段AB的中点,则有(1)AC=BC=AB或(2)AB=2AC=2BC,反之,若有(1)式或(2)式成立,亦能说明点C是线段AB的中点。(五).延长线和反向延长线:延长线段AB是指按从端点A到B的方向延长;延长线段BA是指按从端点B到A的反方向延长,这时也可以说反向延长线段AB。直线、射线没有延长线,射线可以有反向延长线。4(六).关于线段的计算:两条线段长度相等,这两条线段称为相等的线段,记作AB=CD,平面几何中线段的计算结果仍为一条线段。即使不知线段具体的长度也可以作计算。例:如图:AB+BC=AC,或说:AC-AB=BC例5已知线段AB=4厘米,延长AB到C,使BC=2AB,取AC的中点P,求PB的长.例6、画图并计算已知线段CD,延长CD到B,使DB=0.5CB,反向延长CD到A,使CA=CB,若AB=12,求CD的长。练习:12、若点P是线段AB的中点,则下列等式错误的是()A.AP=PBB.AB=2PBC.AP=1/2ABD.AP=2PB13.已知点C是线段AB的中点,点D是线段BC的中点,CD=2.5厘米,请你求出线段AB、AC、AD、BD的长各为多少?练习题1.判断下列说法是否正确(1)直线AB与直线BA不是同一条直线()(2)用刻度尺量出直线AB的长度()(3)直线没有端点,且可以用直线上任意两个字母来表示()(4)线段AB中间的点叫做线段AB的中点()(5)取线段AB的中点M,则AB-AM=BM()(6)连接两点间的直线的长度,叫做这两点间的距离()(7)一条射线上只有一个点,一条线段上有两个点()2.已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________3.电筒发射出去的光线,给了我们的形象4.如图,四点A、B、C、D在一直线上,则图中有______条线段,有_______条射线;若AC=12cm,BD=8cm,且AD=3BC,则AB=______,BC=______,CD=____6.如图,若C为线段AB的中点,D在线段CB上,6DA,4DB,则CD=_____7.C为线段AB上的一点,点D为CB的中点,若AD=4,求AC+AB的长。8.把一条长24cm的线段分成三段,使中间一段的长为6cm,求第一段与第三段中点的距离。9.如图,点C在线段AB上,E是AC的中点,D是BC的中点,若ED=6,则AB的长为().1.线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD中点,求EF。2.已知线段AB=12cm,直线AB上有一点C,且BC=6cm,M是线段AC的中点,求线段AM的长.3.在直线l上取A,B两点,使AB=10厘米,再在l上取一点C,使AC=2厘米,M,N分别是AB,AC中点.求MN的长度。4.如图,已知线段AB和CD的公共部分BD=31AB=41CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长FECDBA5、如图,点C在线段AB上,AC=8厘米,CB=6厘米,点M、N分别是AC、BC的中点。ABCMN(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a厘米,其它条件不变,你能猜想MN....ABCDABCDCABEDADBCEF5的长度吗?并说明理由。6、如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度。7、如图AD=12BD,E是BC的中点,BE=2cmAC=10cm,求线段DE的长.8、已知:B、C是线段AD上两点,且AB:BC:CD=2:4:3,M是AD的中点,CD=6㎝,求线段MC的长。9.如图,点C、D在线段AB上.AC=6cm,CD=4cm,AB=12cm,则图中所有线段的和是________cm.10.线段AB=12.6cm,点C在BA的延长线上,AC=3.6cm,M是BC中点,则AM的长是________cm11.如图,线段AB被点C、D分成了3︰4︰5三部分,且AC的中点M和DB的中点N之间的距离是40cm,求AB的长.12、画出正方形展开图的11种图形。13、作出线段AB=2m-n_m_____n__图9ADCBE