点差法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

用点差法解圆锥曲线的中点弦问题与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。若设直线与圆锥曲线的交点(弦的端点)坐标为),(11yxA、),(22yxB,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。一、以定点为中点的弦所在直线的方程例1、过椭圆141622yx内一点)1,2(M引一条弦,使弦被M点平分,求这条弦所在直线的方程。解:设直线与椭圆的交点为),(11yxA、),(22yxB)1,2(M为AB的中点421xx221yy又A、B两点在椭圆上,则1642121yx,1642222yx两式相减得0)(4)(22212221yyxx于是0))((4))((21212121yyyyxxxx21244)(421212121yyxxxxyy即21ABk,故所求直线的方程为)2(211xy,即042yx。例2、已知双曲线1222yx,经过点)1,1(M能否作一条直线l,使l与双曲线交于A、B,且点M是线段AB的中点。若存在这样的直线l,求出它的方程,若不存在,说明理由。策略:这是一道探索性习题,一般方法是假设存在这样的直线,然后验证它是否满足题设的条件。本题属于中点弦问题,应考虑点差法或韦达定理。解:设存在被点M平分的弦AB,且),(11yxA、),(22yxB则221xx,221yy122121yx,122222yx两式相减,得0))((21))((21212121yyyyxxxx22121xxyykAB故直线)1(21:xyAB由12)1(2122yxxy消去y,得03422xx08324)4(2这说明直线AB与双曲线不相交,故被点M平分的弦不存在,即不存在这样的直线l。评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M位置非常重要。(1)若中点M在圆锥曲线内,则被点M平分的弦一般存在;(2)若中点M在圆锥曲线外,则被点M平分的弦可能不存在。二、过定点的弦和平行弦的中点坐标和中点轨迹例3、已知椭圆1257522xy的一条弦的斜率为3,它与直线21x的交点恰为这条弦的中点M,求点M的坐标。解:设弦端点),(11yxP、),(22yxQ,弦PQ的中点),(00yxM,则210x12021xxx,0212yyy又125752121xy,125752222xy两式相减得0))((75))((2521212121xxxxyyyy即0)(3)(221210xxyyy0212123yxxyy32121xxyyk3230y,即210y点M的坐标为)21,21(。例4、已知椭圆1257522xy,求它的斜率为3的弦中点的轨迹方程。解:设弦端点),(11yxP、),(22yxQ,弦PQ的中点),(yxM,则xxx221,yyy221又125752121xy,125752222xy两式相减得0))((75))((2521212121xxxxyyyy即0)(3)(2121xxxyyy,即yxxxyy3212132121xxyyk33yx,即0yx由12575022xyyx,得)235,235(P)235,235(Q点M在椭圆内它的斜率为3的弦中点的轨迹方程为)235235(0xyx三、求与中点弦有关的圆锥曲线的方程例5、已知中心在原点,一焦点为)50,0(F的椭圆被直线23:xyl截得的弦的中点的横坐标为21,求椭圆的方程。解:设椭圆的方程为12222bxay,则5022ba┅┅①设弦端点),(11yxP、),(22yxQ,弦PQ的中点),(00yxM,则210x,212300xy12021xxx,12021yyy又1221221bxay,1222222bxay两式相减得0))(())((2121221212xxxxayyyyb即0)()(212212xxayyb222121baxxyy322ba┅┅②联立①②解得752a,252b所求椭圆的方程是1257522xy四、圆锥曲线上两点关于某直线对称问题例6、已知椭圆13422yx,试确定的m取值范围,使得对于直线mxy4,椭圆上总有不同的两点关于该直线对称。解:设),(111yxP,),(222yxP为椭圆上关于直线mxy4的对称两点,),(yxP为弦21PP的中点,则12432121yx,12432222yx两式相减得,0)(4)(322212221yyxx即0))((4))((321212121yyyyxxxxxxx221,yyy221,412121xxyyxy3这就是弦21PP中点P轨迹方程。它与直线mxy4的交点必须在椭圆内联立mxyxy43,得mymx3则必须满足22433xy,即22433)3(mm,解得1313213132m课后习题1.直线y=x―1被双曲线2x2―y2=3所截得的弦的中点坐标是()A.(1,2)B.(―2,―1)C.(―1,―2)D.(2,1)2.过点M(-2,0)的直线m与椭圆1222yx交于P1,P2,线段P1P2的中点为P,设直线m的斜率为k1(01k),直线OP的斜率为k2,则k1k2的值为()A.2B.-2C.21D.-213.椭圆ax2+by2=1与直线y=1-x交于A、B两点,过原点与线段AB中点的直线的斜率为23,则ba的值为()A.23B.332C.239D.27324.中心为(0,0),一焦点为F(0,5),截直线y=3x-2所得弦的中点的横坐标为21的椭圆方程为()A.2212575xyB.2217525xyC.222217525xyD.222212575xy5.过点P(1,1)的直线与抛物线y2=4x交于A、B两点,且P点恰好是弦AB的中点,则AB的斜率为;6.已知椭圆221369xy,以及椭圆内一点P(4,2),则以P为中点的弦所在的直线的斜率是()A.B.-C.2D.-27.过椭圆14922yx内一点M(2,0)引椭圆的动弦AB,则弦AB的中点N的轨迹方程是8.点P(8,1)平分双曲线x2-4y2=4的一条弦,则这条弦所在的直线方程;9.已知椭圆x2+2y2=4,则以(1,1)为中点的弦长为;10.已知中心在原点,顶点12,AA在x轴上,离心率为213的双曲线经过点(6,6)P(I)求双曲线的方程;(II)动直线l经过12APA的重心G,与双曲线交于不同的两点,MN,问是否存在直线l使G平分线段MN。试证明你的结论。2212111.已知某椭圆的焦点是F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|,|F2B|,|F2C|成等差数列,(1)求该椭圆的方程;(2)求弦AC中点的横坐标;(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围。解:

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功