2017年高三数学一轮复习圆锥曲线综合题(拔高题)一.选择题(共15小题)1.(2014•成都一模)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=()A.B.2C.D.32.(2014•鄂尔多斯模拟)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.3.(2014•和平区模拟)在抛物线y=x2+ax﹣5(a≠0)上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为()A.(﹣2,﹣9)B.(0,﹣5)C.(2,﹣9)D.(1,6)4.(2014•焦作一模)已知椭圆(a>b>0)与双曲线(m>0,n>0)有相同的焦点(﹣c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是()A.B.C.D.5.(2014•焦作一模)已知点P是椭圆+=1(x≠0,y≠0)上的动点,F1,F2是椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且•=0,则||的取值范围是()A.[0,3)B.(0,2)C.[2,3)D.[0,4]6.(2014•北京模拟)已知椭圆的焦点为F1、F2,在长轴A1A2上任取一点M,过M作垂直于A1A2的直线交椭圆于P,则使得的M点的概率为()A.B.C.D.7.(2014•怀化三模)从(其中m,n∈{﹣1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x轴上的双曲线方程的概率为()A.B.C.D.8.(2014•重庆模拟)已知点F1,F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则该双曲线离心率的取值范围是()A.B.C.D.9.(2014•黄冈模拟)已知点F是双曲线=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,△ABE是锐角三角形,则该双曲线的离心率e的取值范围是()A.(1,+∞)B.(1,2)C.(1,1+)D.(2,1+)10.(2014•凉州区二模)已知双曲线(a>0,b>0)的左右焦点是F1,F2,设P是双曲线右支上一点,上的投影的大小恰好为且它们的夹角为,则双曲线的离心率e为()A.B.C.D.11.(2015•浙江一模)如图,F1、F2是双曲线的左、右焦点,过F1的直线l与C的左、右2个分支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为()A.4B.C.D.12.(2014•河西区二模)双曲线的左、右焦点分别为F1、F2离心率为e.过F2的直线与双曲线的右支交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2的值是()A.1+2B.3+2C.4﹣2D.5﹣213.(2014•呼和浩特一模)若双曲线=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为()A.B.C.D.14.(2014•太原一模)点P在双曲线:(a>0,b>0)上,F1,F2是这条双曲线的两个焦点,∠F1PF2=90°,且△F1PF2的三条边长成等差数列,则此双曲线的离心率是()A.2B.3C.4D.515.(2014•南昌模拟)已知双曲线的左右焦点分别为F1,F2,e为双曲线的离心率,P是双曲线右支上的点,△PF1F2的内切圆的圆心为I,过F2作直线PI的垂线,垂足为B,则OB=()A.aB.bC.eaD.eb二.填空题(共5小题)16.(2014•江西一模)过双曲线=1的一个焦点F作一条渐近线的垂线,若垂足恰在线段OF(O为原点)的垂直平分线上,则双曲线的离心率为_________.17.(2014•渭南二模)已知F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为_________.18.(2013•辽宁)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=_________.19.(2013•江西)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线=1相交于A,B两点,若△ABF为等边三角形,则p=_________.20.(2014•宜春模拟)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=_________.三.解答题(共10小题)21.(2014•黄冈模拟)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22.(2014•南充模拟)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.(Ⅰ)若,求k的值;(Ⅱ)求四边形AEBF面积的最大值.23.(2014•福建)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.24.(2014•福建模拟)已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.(1)求椭圆的方程;(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:为定值.(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.25.(2014•宜春模拟)如图,已知圆G:x2+y2﹣2x﹣y=0,经过椭圆=1(a>b>0)的右焦点F及上顶点B,过圆外一点M(m,0)(m>a)倾斜角为的直线l交椭圆于C,D两点,(1)求椭圆的方程;(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.26.(2014•内江模拟)已知椭圆C:的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(1)求椭圆C的方程;(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.①若线段AB中点的横坐标为,求斜率k的值;②已知点,求证:为定值.27.(2014•红桥区二模)已知A(﹣2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为.(Ⅰ)求椭圆C的方程及离心率;(Ⅱ)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.28.(2014•南海区模拟)一动圆与圆外切,与圆内切.(I)求动圆圆心M的轨迹L的方程.(Ⅱ)设过圆心O1的直线l:x=my+1与轨迹L相交于A、B两点,请问△ABO2(O2为圆O2的圆心)的内切圆N的面积是否存在最大值?若存在,求出这个最大值及直线l的方程,若不存在,请说明理由.29.(2014•通辽模拟)如图所示,F是抛物线y2=2px(p>0)的焦点,点A(4,2)为抛物线内一定点,点P为抛物线上一动点,|PA|+|PF|的最小值为8.(1)求抛物线方程;(2)若O为坐标原点,问是否存在点M,使过点M的动直线与抛物线交于B,C两点,且以BC为直径的圆恰过坐标原点,若存在,求出动点M的坐标;若不存在,请说明理由.30.(2014•萧山区模拟)如图,O为坐标原点,点F为抛物线C1:x2=2py(p>0)的焦点,且抛物线C1上点P处的切线与圆C2:x2+y2=1相切于点Q.(Ⅰ)当直线PQ的方程为x﹣y﹣=0时,求抛物线C1的方程;(Ⅱ)当正数p变化时,记S1,S2分别为△FPQ,△FOQ的面积,求的最小值.参考答案与试题解析一.选择题(共15小题)1.(2014•成都一模)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=()A.B.2C.D.3考点:椭圆的简单性质.菁优网版权所有专题:计算题;压轴题.分析:过点B作BM⊥l于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,由椭圆的第二定义可求得|BF|,进而根据若,求得|AF|.解答:解:过点B作BM⊥l于M,并设右准线l与x轴的交点为N,易知FN=1.由题意,故.又由椭圆的第二定义,得∴.故选A点评:本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.2.(2014•鄂尔多斯模拟)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.考点:抛物线的简单性质.菁优网版权所有专题:计算题;压轴题.分析:根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.解答:解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,故选D点评:本题主要考查了抛物线的简单性质.考查了对抛物线的基础知识的灵活运用.3.(2014•和平区模拟)在抛物线y=x2+ax﹣5(a≠0)上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为()A.(﹣2,﹣9)B.(0,﹣5)C.(2,﹣9)D.(1,6)考点:抛物线的应用.菁优网版权所有专题:计算题;压轴题.分析:求出两个点的坐标,利用两点连线的斜率公式求出割线的斜率;利用导数在切点处的值为切线的斜率求出切点坐标;利用直线方程的点斜式求出直线方程;利用直线与圆相切的条件求出a,求出抛物线的顶点坐标.解答:解:两点坐标为(﹣4,11﹣4a);(2,2a﹣1)两点连线的斜率k=对于y=x2+ax﹣5y′=2x+a∴2x+a=a﹣2解得x=﹣1在抛物线上的切点为(﹣1,﹣a﹣4)切线方程为(a﹣2)x﹣y﹣6=0直线与圆相切,圆心(0,0)到直线的距离=圆半径解得a=4或0(0舍去)抛物线方程为y=x2+4x﹣5顶点坐标为(﹣2,﹣9)故选A.点评:本题考查两点连线的斜率公式、考查导数在切点处的值为切线的斜率、考查直线与圆相切的充要条件是圆心到直线的距离等于半径.4.(2014•焦作一模)已知椭圆(a>b>0)与双曲线(m>0,n>0)有相同的焦点(﹣c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是()A.B.C.D.考点:椭圆的简单性质;等差数列的性质;等比数列的性质;圆锥曲线的共同特征.菁优网版权所有专题:计算题;压轴题.分析:根据是a、m的等比中项可得c2=am,根据椭圆与双曲线有相同的焦点可得a2+b2=m2+n2=c,根据n2是2m2与c2的等差中项可得2n2=2m2+c2,联立方程即可求得a和c的关系,进而求得离心率e.解答:解:由题意:∴,∴,∴a2=4c2,∴.故选D.点评:本题主要考查了椭圆