26.2《实际问题与反比例函数》ppt课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

26.2实际问题与反比例函数1.用反比例函数解决实际问题探究:已知水池中贮水800m3,每小时放水xm3,yh放完,求y与x的函数关系式.函数解:800=xy←建立数学模型↓y=800x←分清()和()↓()←自变量的取值范围↓y与x的函数关系式为y=800x(x0)自变量x0归纳:用函数观点解实际问题:①搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;②分清自变量和函数,并注意自变量的取值范围.2.常见的反比例函数关系(1)已知压力F一定,则压强p与受力面积S之间的函数关系式为____________,p是S的________函数.反比例(2)一定质量m的气体的密度ρ与体积V之间的函数关系式为__________,ρ是V的__________函数.反比例(3)长方形面积S一定时,长y与宽x之间的函数关系式为____________,y是x的________函数.反比例p=FSρ=mVy=Sx(4)行驶路程s一定时,行驶速度v与行驶时间t之间的函数关系式为__________,v是t的________函数.反比例(5)圆柱体的体积V一定时,圆柱体的底面面积S与圆柱体的高d的函数关系式为______________,S是d的________函数.反比例(6)用电器的输出功率P与它两端的电压U及用电器的电阻R的关系为:PR=U2,这个关系可以写作:P=__________或R=__________.v=stS=VdU2RU2P知识点反比例函数的实际应用(重难点)【例题】某运输队要运300吨物资到江边防洪.(1)运输时间t(单位:小时)与运输速度v(单位:吨/时)有怎样的函数关系?(2)由于情况紧急,防洪指挥部命令物资要在2小时之内运到江边,则运输速度至少为多少?思路点拨:一般解决函数的实际问题,按照我们通常的理解列出相关的方程,通过变形化成我们所求的函数关系式.解:(1)由已知得vt=300,∴t与v的函数关系式为t=300v.(2)依题意,得300v≤2,解得v≥150吨/时,∴物资要在2小时之内运到江边,则运输速度至少为150吨/时.【跟踪训练】1.某闭合电路中,电源的电压为定值,电流I(单位:A)与电阻R(单位:Ω)成反比例.如图26-2-1表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的)C图26-2-1函数解析式为(2A.I=R3B.I=R6C.I=R6D.I=-R2.矩形面积为4,它的长y与宽x之间的函数关系用图象大致可表示为()B3.人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄,当车速为50km/h时,视野为80度.如果视野f(单位:度)是车速v(单位:km/h)的反比例函数.求f,v之间的关系式,并计算当车速为100km/h时视野的度数.解:设f=kv(k≠0).当v=50时,f=80,所以k=50×80=4000,即f=4000v.当v=100时,f=40.故f,v之间的关系式为f=4000v,当车速为100km/h时,视野为40度.

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功