八年级数学第十六章二次根式第一节二次根式的概念和性质16.1二次根式1.二次根式的概念:式子)0(aa叫做二次根式.注意被开方数只能是正数或O.2.二次根式的性质①)0()0(2aaaaaa;②)0()(2aaa③)0,0(babaab;④)0,0(bababa16.2最简二次根式与同类二次根式1.被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式16.3二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.2.二次根式的乘法:等于各个因式的被开方数的积的算术平方根,即).0,0(baabba3.二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:ac+bc=(a+c)c(c0)).0,0(baabbaaabb(a0,b0)()nnaa(a0)第十七章一元二次方程17.1一元二次方程的概念1.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程2.一般形式y=ax²+bx+c(a≠0),称为一元二次方程的一般式,ax叫做二次项,a是二次项系数;bx叫做一次项,b是一次项系数;c叫做常数项17.2一元二次方程的解法1.特殊的一元二次方程的解法:开平方法,分解因式法2.一般的一元二次方程的解法:配方法、求根公式法3.求根公式242bbacxa:22124422bbacbbacxxaa;△=24bac≥017.3一元二次方程的判别式1.一元二次方程20(0)axbxca:△>0时,方程有两个不相等的实数根△=0时,方程有两个相等的实数根△<0时,方程没有实数根2.反过来说也是成立的17.4一元二次方程的应用1.一般来说,如果二次三项式2axbxc(0a)通过因式分解得2axbxc=12()()axxxx;1x、2x是一元二次方程20(0)axbxca的根2.把二次三项式分解因式时;如果24bac≥0,那么先用公式法求出方程的两个实数根,再写出分解式如果24bac<0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式3.实际问题:设,列,解,答第十八章正比例函数和反比例函数18.1.函数的概念1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2.在某个变化过程中有两个变量,设为x和y,如果在变量x的允许取之范围内,变量y随变量x的变化而变化,他们之间存在确定的依赖关系,那么变量y叫做变量x的函数,x叫做自变量3.表达两个变量之间依赖关系的数学是自称为函数解析式()yfx4.函数的自变量允许取之的范围,叫做这个函数的定义域;如果变量y是自变量x的函数,那么对于x在定义域内去顶的一个值a,变量y的对应值叫做当x=a时的函数值18.2正比例函数1.如果两个变量每一组对应值的比是一个不等于零的常数,那么就说这两个变量成正比例2.正比例函数:解析式形如y=kx(k是不等于零的常数)的函数叫做正比例函数,气质常数k叫做比例系数;正比例函数的定义域是一切实数3.对于一个函数()yfx,如果一个图形上任意一点的坐标都满足关系式()yfx,同时以这个函数解析式所确定的x与y的任意一组对应值为坐标的点都在图形上,那么这个图形叫做函数()yfx的图像4.一般地,正比例函数ykx(0)kk是常数且的图像时经过原点O(0,0)和点(1,k)的一条直线,我们把正比例函数ykx的图像叫做直线ykx5.正比例函数ykx(0)kk是常数且有如下性质:(1)当k<0时,正比例函数的图像经过一、三象限,自变量x的值逐渐增大时,y的值也随着逐渐增大(2)当k<0时,正比例函数的图像经过二、四象限,自变量x的值逐渐增大时,y的值则随着逐渐减小18.3反比例函数1.如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例2.解析式形如(0)kykkx是常数,的函数叫做反比例函数,其中k也叫做反比例系数反比例函数的定义域是不等于零的一切实数3.反比例函数(0)kykkx是常数,有如下性质:(1)当k>0时,函数图像的两支分别在第一、三象限,在每一个象限内,当自变量x的值逐渐增大时,y的值则随着逐渐减小(2)当k<0时,函数图像的两支分别在第二、四象限,在每一个象限内。自变量x的值逐渐增大时,y的值也随着逐渐增大18.4函数的表示法1.把两个变量之间的依赖关系用数学式子来表达------解析法2.把两个变量之间的依赖关系用图像来表示------图像法3.把两个变量之间的依赖关系用表格来表示------列表法第十九章几何证明19.1命题和证明1.我们现在学习的证明方式是演绎证明,简称证明2.能界定某个对象含义的句子叫做定义3.判断一件事情的句子叫做命题;其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题4.数学命题通常由题设、结论两部分组成5.命题可以写成“如果……那么……”的形式,如果后是题设,那么后市结论19.2证明举例1.平行的判定,全等三角形的判定19.3逆命题和逆定理1.在两个命题中,如果第一个命题的题设是第二个命题的结论,二第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题2.如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理19.4线段的垂直平分线1.线段的垂直平分线定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。2、逆定理:和一条线段的两个端点距离相等的点,在这条线段垂直平分线上。19.5角的平分线1、角的平分线定理:在角的平分线上的点到这个角的两边距离相等。2、逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点在这个角的平分线上。19.6轨迹1、和线段两个端点距离相等的点的轨迹是这条线段的垂直平分线2、在一个叫的内部(包括顶点)且到角两边距离相等的点的轨迹是这个角的平分线3、到定点的距离等于定长的点的轨迹是以这个定点为圆心、定长为半径的圆19.7直角三角形全等的判定1.定理1:如果直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为H.L)2.其他全等三角形的判定定理对于直角三角形仍然适用19.8直角三角形的性质1.定理2:直角三角形斜边上的中线等于斜边的一半2.推论1:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半3.推论2:在直角三角形中,如果一条之骄傲便等于斜边的一般,那么这条直角边所对的角等于3019.9勾股定理1.定理:在直角三角形中,斜边大于直角边2.勾股定理:直角三角形两条直角边的平方和,等于斜边的平方3.勾股定理的逆定理:如果三角形的一条边的平方等于其他两条边的平方和,那么这个三角形是直角三角形19.10两点间距离公式1.如果直角坐标平面内有两点11(,)Axy、22(,)Bxy,那么A、B两点的距离222121()()ABxxyy八年级下册第二十章一次函数20.1一次函数的概念1.一般地,解析式形如(0)ykxbkbk是常数,的函数叫做一次函数;一次函数的定义域是一切实数2.一般地,我们把函数yc(c为常数)叫做常值函数20.2一次函数的图像1.列表、描点、连线2.一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距3.一般地,直线(0)ykxbkbk是常数,与y轴的交点坐标是(0,b),直线的截距是b4.一次函数ykxb(b≠0)的图像可以由正比例函数ykx的图像平移得到当b>0时,向上平移b个单位,当b<0时,向下平移b的绝对值个单位5.一元一次不等式与一次函数之间的关系(看图)20.3一次函数的性质1.一次函数(0)ykxbkbk是常数,具有以下性质:当k>0时,函数值y随自变量x的值增大而增大当k<0时,函数值y随自变量x的值增大而减小2.一次函数0ykxbk0b0b0b0k0k①如图所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).20.4一次函数的应用1.利用一次函数及图像解决实际问题第二十一章代数方程21.1一元整式方程1.12ax(a是正整数),x是未知数,a是用字母表示的已知数。于是,在项ax中,字母a是项的系数,我们把a叫做字母系数,我们把a叫做字母系数,这个方程是含字母系数的一元一次方程2.如果方程中只有一个未知数且两边都是关于未知数的整式,那么这个方程叫做一元整式方程3.如果经过整理的一元整式方程中含未知数的项的最高次数是n(n是正整数),那么这方程就叫做一元n次方程;其中次数n大于2的方程统称为一元高次方程,本章简称高次方程21.2二项方程1.如果一元n次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程;一般形式为0naxb(0,0ab,n是正整数)2.解一元n(n>2)次二项方程,可转化为求一个已知数的n次方根3.对于二项方程0naxb(0,0ab)当n为奇数时,方程有且只有一个实数根当n为偶数时,如果ab<0,那么方程有两个实数根,且这两个根互为相反数;如果ab>0,那么方程没有实数根21.3可化为一元二次方程的分式方程1.解分式方程,可以通过方程两边同乘以方程中各分式的最简公分母,约去分母,转化为正式方程来解2.注意将所得的根带入最简公分母中检验是否为增根(也可带入方程中)3.换元法可将某些特殊的方程化繁为简,并且在解分式方程的过程中,避免了出现解高次方程的问题,起到降次的作用21.4无理方程1.方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程2.整式方程和分式方程统称为有理方程3.有理方程和无理方程统称为初等代数方程,简称代数方程4.解简单的无理方程,可以通过去根号转化为有理方程来解,解简单无理方程的一般步骤5.注意无理方程的检验必须带入原方程中检验是否为增根21.5二元二次方程和方程组1.仅含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,叫二元二次方程2.关于x、y的二元二次方程的一般形式是:220axbxycydxeyf(a、b、c、d、e、f都是常数,且a、b、c中至少有一个不是零;当b为零时,a与d以及c与e分别不全为零)3.仅含有两个未知数,各方程是整式方程,并且含有未知数的项的最高次数为2。像这样的方程组叫做二元二次方程组4.能是二元二次方程左右两边的值相等的一对未知数的值,叫做二元二次方程5.方程组中所含各方程的公共解叫做这个方程组的解21.6二元二次方程组的解法1.代入消元法2.因式分解法21.7列方程(组)解应用题第二十二章四边形22.1多边形1.由平面内不在同一直线上的一些线段收尾顺次联结所组成的封闭图形骄傲做多边形2.组成多边形每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点3.多边形相邻两边所成的角叫做多边形的内角4.对于一个多边形,画出它的任意一边所在的直线,如果其余个边都在这条直线的一侧,那么这个多边形叫做凸多边形;否则叫做凹多边形5.多边形的内角和定理:n边形的内角和等于(n-2)×180°6.多边形的一