函数的最大(小)值与导数(公开课).

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1.3导数在研究函数中的应用1.3.3函数的最大(小)值与导数执教老师:易静班级:高二(2)问题一、函数的极值定义设函数f(x)在点x0附近有定义,•如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);•如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0);oxyoxy0x0x◆函数的极大值与极小值统称为极值.使函数取得极值的点x0称为极值点温故而知新(5)由f’(x)在方程f’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况温故而知新问题二;求解函数极值的一般步骤:(1)确定函数的定义域(2)求函数的导数f’(x)(3)求方程f’(x)=0的根(4)用方程f’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格xoyax1by=f(x)x2x3x4x5x6135(),(),()fxfxfx246(),(),()fxfxfx温故而知新问题三:观察下列图形,找出函数的极值函数y=f(x)的极小值:函数y=f(x)的极大值:在社会生活实践中,为了发挥最大的经济效益,常常遇到如何能使用料最省、产量最高,效益最大等问题,这些问题的解决常常可转化为求一个函数的最大值和最小值问题函数在什么条件下一定有最大、最小值?他们与函数极值关系如何?极值是一个局部概念,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小。新课讲授1知识与技能:掌握利用导数求函数最值的方法。2.过程与方法:正确理解利用导数研究函数的最值的具体过程。3.情感、态度与价值观:引导学生实现自我探索的特点,自己总结用导数研究函数最值方法和注意事项。重点:利用导数求函数的最值。难点:准确求函数的最值。][bax,在闭区间上的连续函数必有最大值与最小值观察下列图形,你能找出函数的最值吗?xoyax1by=f(x)x2x3x4x5x6xoyax1by=f(x)x2x3x4x5x6),(bax在开区间内的连续函数不一定有最大值与最小值.因此:该函数没有最大值。f(x)max=f(a),f(x)min=f(x3)探究1xoyax1by=f(x)x2x3x4x5x6如何求出函数在[a,b]上的最值?结论:一般的如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值。探究2Oxyabx3x2x1Oxyabx1x2x3Oxyabx2x1思考1观察下列图形,找出函数的最值并总结规律图1图3图2连续函数在[a,b]上必有最值;并且在极值点或端点处取到.观察右边一个定义在区间[a,b]上的函数y=f(x)的图象:发现图中____________是极小值,_________是极大值,在区间上的函数的最大值是______,最小值是_______。f(x1)、f(x3)f(x2)f(b)f(x3)问题在于如果在没有给出函数图象的情况下,怎样才能判断出f(x3)是最小值,而f(b)是最大值呢?xX2oaX3bx1yy=f(x)思考2追踪练习(2)将y=f(x)的各极值与f(a)、f(b)(端点处)比较,其中最大的一个为最大值,最小的一个最小值.求f(x)在闭区间[a,b]上的最值的步骤:(1)求f(x)在区间(a,b)内极值(极大值或极小值);注意:1.在定义域内,最值唯一;极值不唯一2.最大值一定比最小值大.方法总结求函数的最值时,应注意以下几点:(1)函数的极值是在局部范围内讨论问题,是一个局部概念,而函数的最值是对整个定义域而言,是在整体范围内讨论问题,是一个整体性的概念.(2)闭区间[a,b]上的连续函数一定有最值.开区间(a,b)内的连续函数不一定有最值,但若有唯一的极值,则此极值必是函数的最值.(3)函数在其定义域上的最大值与最小值至多各有一个,而函数的极值则可能不止一个,也可能没有极值,并且极大值(极小值)不一定就是最大值(最小值).想一想,记一记1.下列说法正确的是()(A)函数的极大值就是函数的最大值(B)函数的极小值就是函数的最小值(C)函数的最值一定是极值(D)若函数的最值在区间内部取得,则一定是极值.2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则()fx()(A)等于0(B)大于0(C)小于0(D)以上都有可能3.函数y=432111432xxx,在[-1,1]上的最小值为()(A)0(B)-2(C)-1(D)1213ADA4、函数y=x3-3x2,在[-2,4]上的最大值为()(A)-4(B)0(C)16(D)20C学以致用反思:本题属于逆向探究题型:其基本方法最终落脚到比较极值与端点函数值大小上,从而解决问题,往往伴随有分类讨论。21()612fxxx解:()()002fxxx令解得或(240,fa又)40373aa由已知得解得(2)(1)()2,2fx由知在的最大值为3.(0),fa(2)8fa能力提升已知函数在[-2,2]上有最小值-37,(1)求实数a的值;(2)求f(x)在[-2,2]上的最大值axxx2362)(f通过本堂课的学习我学会了……我感到困惑的是……我体会到……

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功