ELNES的原理及应用实例在1929年由Rudberg发现利用一特定能量的电子束施加在欲测量的金属样品上,然后接收非弹性(亦即是有能量损失)的电子,发现会随着样品的化学成分不同而有不同的损失能量,因此可以分析不同的能量损失位置而得知材料的元素成份。EELS在50年代开始流行起来,称为材料测试的主要手段之一。到60年代末70年代初发展起来的高分辨电子能量损失谱(HREELS),在电子非弹性碰撞理论的推动下,由于其对表面和吸附分子具有高的灵敏性,并对吸附的氢具有分析能力,更重要的是能辨别表面吸附的原子、分子的结构和化学特性,进一步推动了材料科学的发展。其中,能量损失近边结构(ELNES,energy-lossnear-edgestructure)是高分辨电子损失能量谱的一种具体应用技术手段。通过谱形分析,可以提供试样的能带结构和元素的化学价态等重要信息,这在材料科学研究中发挥着独特的作用。一、电子能量损失谱仪电子能量损失谱仪有两种商业产品,一类是磁棱镜谱仪,另一种是Ω过滤器。前者安装在透射电子显微镜照相系统下面,故可以随时决定是否需要安装;而后者是安装在镜筒内,故是一种特殊技术,在分析电子显微镜出厂前必须事先安装好。在分析电子显微镜中应用最普遍也最方便的是磁棱镜谱仪。图1磁棱镜谱仪示意图磁棱镜谱仪的结构如图1所示,磁棱镜实质是一个扇形铁磁块,它对电子的作用和玻璃棱镜对白色光的色散作用相似,故称磁棱镜。透过试样的电子在磁棱镜内沿半径为R的弧形轨迹前进,能量较小的电子(即能量损失较大的电子)运动轨迹的曲率半径R也较小,而能量较大的电子(即能量损失较小的电子)运动轨迹的曲率半径R较大,相同能量的电子则聚焦在接受狭缝平面处同一位置。具有能量损失ΔE的电子在聚焦平面上与没有能量损失的电子(即零损失电子)存在位移Δx,Δx的大小由下式决定:2002000cm/2cm/14ExEEER式中,m0c2为电子的静止质量,等于511keV;Δx/ΔE称为色散度。通过不同Δx的平面处可以选择不同能量的电子进行检测和计算。对于加速电压为200kV的EELS,能量分辨率为1~2eV,远高于EDS,使用场发射电子枪,EELS的能量分辨率可达0.8~1eV。二、电子能量损失谱分析入射电子束在与薄试样相互作用的过程中会由于非弹性散射而损失一部分能量ΔE=E0-Ein(E0为与试样交互作用前的入射电子能量,它由加速电压所决定;Ein为与薄试样产生非弹性散射后的透射电子能量,它由交互作用的类型所决定的),其中一部分电子所损失的部分能量值是试样中某个元素的特征值,采集投射电子信号强度,并按照其损失能量大小展示出来,这就是电子能量损失谱(EELS,ElectronEnergyLossSpectroscopy),其中具有特征能量损失的透射电子的信号是电子能量损失谱进行微区分析的基础。电子损失的能量直接反应了发生散射的机制、试样的化学组成以及厚度等信息,因而能够对薄试样微区的元素组成、化学键及电子结构等进行分析。由于低原子序数元素的非弹性散射几率相当大,因此EELS技术特别适用于薄试样低原子序数元素如碳、氮、氧、硼等的分析。它的特点是:①分析的空间分辨率高,仅仅取决于入射电子束与试样的互作用体积。②直接分析入射电子与试样非弹性散射互作用的结果而不是二次过程,探测效率高。一般来说,在同样的实验条件下,EELS的信号强度远高于EDS,故可测出元素含量比EDS低。③EELS没有XEDS中的各种假象,不需进行如吸收、荧光等各种校正,其定量分析原则上是无标样的。但是,电子能量损失谱分析存在一定的困难,主要是对试样厚度的要求较高,尤其是定量分析的精度有待改善。图2硅的电子能量损失谱图2所示是典型的硅的电子能量损失谱,其以投射电子损失的能量ΔE为横坐标,而以电子信号的强度I为纵坐标。EELS测量的能量范围是从0eV到几千eV。外壳层的电子具有小的键能,而内壳层的电子具有大的键能。因此,电子损失能量谱通常分为两部分,即低能损失谱(0~50eV),包含零损失峰,它记录外壳层的电子能量损失;另一部分是高能损失谱(50eV以上),它记录内壳层的电子能量损失。1)零损失峰零损失峰表示了能量无损失或能量损失太小以至谱仪不能分辨的电子信号强度。具体来说,这些电子未发生交互作用或受到原子核的弹性散射,或这些电子引起试样中原子振动而导致声子激发(非弹性散射)。零损失峰总是强度最大的峰,在图2中用字母A表示。零损失峰若无特殊情况是不会收集的,因为它强度太大,以致易损坏闪烁器或饱和光电二极管阵列。零损失峰主要用于谱仪的能量标定和仪器调整,以其半高宽定义为谱仪能量分辨率,已有对称的高斯分布为谱仪良好状态的标志。图3200kV下场发射电子枪得到的零损失峰2)低能损失区能量损失在0~50eV范围的低能区是入射电子与试样内价电子交互作用引起的电子云集体振荡的等离子峰,在图2中用字母B表示。图4Al-Mg合金的低能损失谱(第一等离子峰损失ΔEp(1)≈15eV)等离子震荡引起的第一个峰强度P(1)与零损失峰强度P(0)之比与试样的厚度t有关,ptP(0)P(1)。其中,λp是离子振荡的平均自由程,它与入射电子能量和试样成分有关。在入射电子能量为100keV时,λp为50~150nm。据此可以测定试样的厚度t,尤其是试样很薄,即小于1~2个消光距离时,用其他方法(如汇聚束光线法)均较难测定,唯有该法才能有效测出该薄试样的厚度。此外,引起等离子激发的入射电子能量损失为pp2hE,而等离子震荡频率ωp是参与振荡的自由电子数目ne的函数,2/1epn)(。因此等离子激发能量损失ΔEp也是试样组成元素和成分的特征量,可以从自由电子数目的变化(即ΔEp的变化)来推测元素浓度的变化。3)高能损失区能量损失在50eV以上的高能区域称为高能损失区,它是由入射电子使试样中的K、L、M等内层电子被激发而造成的。由于内层电子被激发的概率要比等离子激发概率小2~3个数量级,所以其强度很小,因此记录在一个电子能量损失谱时,将内层电离损失区的谱放大几十倍再与零损失区、低能损失区一起显示出来。在电子损失能量谱中,电离损失峰理想峰形为三角形或锯齿形,真实的峰形近似三角形或锯齿形。电离损失峰的始端能量(电离边)等于内壳层电子电离所需的最低能量,而成为元素鉴别的唯一特征能量。如图5所示是来自一种矿物(Al2O3SiO2)的高能损失谱,对照各元素电离能量值表可知,能量损失约为532eV的电离边是氧原子的K层电子激发引起的,而氧不能被铍窗探测器的EDS测出。图5一种矿物(Al2O3SiO2)的高能损失谱在电子能量损失谱中,正是这种电离损失峰成为微区化学成分在轻元素附近范围分析的重要手段,弥补了X射线能量谱分析在轻元素定量分析时的不足。三、能量损失近边结构在大于电离阀值Ec约50eV范围内,电子能量损失谱存在明显的精细振荡结构,这就是能量损失近边结构(ELNES,energy-lossnear-edgestructure)。当样品中的内壳层电子从入射电子获得足够能量时,壳层电子将从基态跃迁到激发态,而在内壳层留下一个空穴。但如果获得的能量不足以使其完全摆脱原子核的束缚成为自由电子,那么内壳层电子只能跃迁到费米能级以上导带中某一空的能级。此时从入射电子获得的能量等于所激发壳层电子跃迁前后所处能级能量之差。虽然电子跃迁到导带中任一能级都是可能的,但导带中能级是分立的,且每一能级所能容纳的电子的能力也是不一样的。又因电子跃迁而从入射电子获得的能量正好和能量损失谱中入射电子的能量损失相对应,我们可以通过电子能量损失谱中能量损失电子的强度分布得到样品中导带能级分布和态密度(电子在一定能量范围内的相对分布)等电子结构信息。因为电子能级分布和态密度对原子间的成键和价态非常敏感,这些将直观地在ELNES上表现出来。目前,这一方法已广泛的运用在判断某些过渡金属元素(例如Fe,Co,Ni等)在不同化合物中的化学价态。1)能带与禁带能带理论是用量子力学的方法研究固体内部电子运动的理论。始于20世纪初期,在量子力学确立以后发展起来的一种近似理论。它曾经定性地阐明了晶体中电子运动的普遍特点,并进而说明了导体与绝缘体、半导体的区别所在,解释了晶体中电子的平均自由程问题。自20世纪六十年代,电子计算机得到广泛应用以后,使用电子计算机依据第一原理做复杂能带结构计算成为可能(不过仍然非常耗时,一次典型的能带结构自洽计算在普通工作站上往往需要花几个小时甚至一周多的时间才能完成)。能带理论由定性发展为一门定量的精确科学。晶体中电子所能具有的能量范围,在物理学中往往形象化地用一条条水平横线表示电子的各个能量值,这条线称为能级。能量愈大,线的位置愈高,一定能量范围内的许多能级(彼此相隔很近)形成一条带,称为能带。各种晶体能带数目及其宽度等都不相同。相邻两能带间的能量范围称为“能隙”或“禁带”。完全被电子占据的能带称“满带”,满带中的电子不会导电;完全未被占据的称“空带”;部分被占据的称“导带”,导带中的电子能够导电;价电子所占据能带称“价带”。能量比价带低的各能带一般都是满带,价带可以是满带,也可以是导带;如在金属中是导带,所以金属能导电。在绝缘体中和半导体中是满带所以它们不能导电,但半导体很容易因其中有杂质或受外界影响(如光照,升温等),使价带中的电子数目减少,或使空带中出现一些电子而成为导带,因而也能导电。图6能带与禁带2)原子构成固体时能级的分裂孤立原子的能级是一系列分立的能级。将N个原子逐渐靠近时,原子之间的相互作用逐渐增强,各原子上的电子受其它原子(核)的影响亦逐渐增强;最外层电子的波函数将会发生重叠,简并会解除,原孤立原子能级分裂为N个靠得很近的能级;原子靠得越近,波函数交叠越大,分裂越显著。由N个相同原子聚集成固体时,相应于孤立原子的每个能级分裂成N个能级,分离出的能级是十分密集的,它们形成一个能量准连续的能带。通常内层电子交叠很小,相应地能级分裂变很小,可近似不受干扰;固体与孤立原子的差异(如光谱性质,电学性质等)主要是由外层电子状态的变化所引起。如图7所示,八个原子组成晶体时,2s能级分裂成8个能级,2p能级本身是三度简并,分裂为24个能级。分裂的2s能级和2p能级形成了一个能量准连续的能带。图78个原子形成晶体时能级分裂的情况。因此,孤立原子外层电子状态的电子跃迁所产生的光谱表现为分立谱线,而固体中涉及外层电子状态的跃迁光谱表现为连续谱。3)电子态:紧束缚近似波函数是量子力学中用来描述粒子微观状态的函数。对于内壳层的电子,电子受原子核束缚较强,而原子之间的相互作用相对较弱,晶体中的电子状态近似于孤立原子中的情形。这时所谓的紧束缚的方法更为适用,它将所有原子的电子波函数的线性叠加作为零级近似或尝试波函数:..,)()(jljljldRrAr这里表示位于第l个原胞内的第j个原子的第α个原子波函数或原子轨道。虽然对相同的Rl与dj,即同一原子的不同α的轨道是相互正交的,但不同原子的轨道之间一般不具有正交的性质。因此上式并非将晶体波函数用正一系展开,只能看作是尝试波函数。然而为了符合布洛赫定理,将系数写成lRikjjleAAN1,即)(1)(,jlRikjljkdRreANrl;或记为)()(,rArkjjjk式中ljlRikkjdRreNrl)(1)(。)(jldRr有时称为与第j类原子的第α个原子轨道相应的布洛赫和。可见,所有原子轨道布洛赫和的线性组合可以选为近似波函数。4)电子态密度电子结构是宏观量,态密度是微观量,所以电子结构不适合解释纳米粒子尺寸变化引起的特性,而应该用态密度来解释。原则上讲,态密度可以作为能带结构的一个可视化结果。很多分析和能带的分析结果可以一一对应,很多术语也和能带分析相通。但是因为它更直观,因此在结果讨论中用得比能带分析更广泛一些。在统计力学和凝聚体物理学中,状态密度或态密度为某一能量附近每单位能量区间里微观状态的数目,又叫做能态