-1-温度测量与控制电路设计报告目录一.设计任务与要求……………………………2二.设计的作用、目的…………………………2三.设计的具体实现……………………………21.系统概述…………………………………………22.单元电路设计,仿真与分析……………………53.PCB板电路制作…………………………………15四.心得体会与建议……………………………16五.附录…………………………………………18六.参考文献……………………………………19-2-温度测量与控制电路设计报告一.设计任务与要求⑴被测温度和控制温度均可数字显示;⑵测量温度为0~1200C,精度为±0.50C;⑶控制温度连续可调,精度±1OC;⑷温度超过额定值时,产生声、光报警信号。二.设计的作用、目的进一步熟悉模拟和数字设计的方法和规范,并进一步巩固所学模拟电子及相关知识,达到综合应用电子技术的目的,培养设计开发以及动手实践等能力,学会阅读相关科技文献,查找器件手册与相关参数,独立思考分析,完整理总结设计报告。了解温度传感器件的功能,学会在实际电路中应用。进一步熟悉集成运算放大器的线性和非线性应用。了解检测温度的传感器种类不同,采用的测量电路和要求不同,执行器、开关等的控制方式也不同。运用电子技术来实现温度测量和控制任务,完成温度测量和控制电路的连接和调试。学会对电子电路的检测和排除电路故障,进一步熟悉常用电子仪器的使用,提高分析问题和解决问题的能力。三.设计的具体实现1.系统概述1.1对温度进行测量、控制并显示首先必须将温度的度数(非电量)转换成电量,然后采用电子电路实现题目要求。-3-可采用温度传感器,将温度变化转换成相应的电信号,并通过放大、滤波后A/D转换器变成数字信号,然后进行译码显示。1.2恒温控制将要控制的温度所对应的电压值作为基准电压VREF,用实际测量值Iv与VREF进行比较,比较结果(输出状态)自动地控制、调节系统温度。1.3报警部分设定被控温度对应的最大允许值maxV,当系统实际温度达到此对应值maxV时,发生报警信号。1.4温度显示部分采用转换开关控制,可分别显示系统温度、控制温度对应值REFV,报警温度对应值maxV。传感器可以采用铂电阻、精密电阻和电位器组成测量电桥,电桥的输出电压作为运放构成的差动放大器双端输入信号,将信号放大后由低通滤波器将高频信号滤去,如图所示。-+A1R1WR2R1003R4R5R7R9R6R2WR8RouV9V9-4-1.5方框图总体说明:⑴传感器可以采用LM35温度传感器,电桥的输出电压作为运放构成的差动放大器双端输入信号,将信号放大后由低通滤波器将高频信号滤去。如上图所示。⑵被测温度信号电压加于比较器(Ⅰ)与控制温度电压VREF进行比较,比较结果通过调温控制电路控制执行机构的相应动作,使被控系统升温或降温。⑶当控制电路出现故障使温度失控时,使被控系统温度达到允许最高温度对应值maxV,用声、光报警电路发出警报,值班人员将采取相应的紧急措施。maxVVREFLEDR被测量控制系统温度传感器放大器低通滤波器译码驱动显示电路A/D转换器执行机构调温控制电路比较器(Ⅰ)扬声器或蜂鸣器报警控制电路比较器(Ⅱ)S-5-⑷开关S1可分别闭合系统温度、控制温度电压VREF和报警温度电压maxV,通过A/D转换器将模拟量转换成数字量,显示器显示出相应的温度数值。2.单元电路设计,仿真与分析2.1温度传感器LM35是电压输出型集成温度传感器,LM35集成温度传感器是利用一个热电偶检测相应的温度,热电偶是将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如下图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。温度传感器热电偶就是利用这一效应工作的。温度传感器热电偶的结构形式为了保证温度传感器热电偶可靠、稳定地工作,对它的结构要求如下:①组成温度传感器热电偶的两个热电极的焊接必须牢固;-6-②两个热电极彼此之间应很好地绝缘,以防短路;③补偿导线与温度传感器热电偶自由端的连接要方便可靠;④保护套管应能保证热电极与有害介质充分隔离。传感器电路原理图LM35温度传感器,输出电压0~0.99V,温度每上升1℃,电压上升10mv,可测温度0~99℃.即V=0.01T,运算放大器LM358放大5倍电压,即V=0.05T.经0809通道0转化为数字量,因为转换公式:V/5=X/255,即0.05T/5=X/255,则T≈100X/256.为了精确到0.1℃,使t=10*T=1000X/256=125X/32,所以转换公式是t=125X/32,X为数字量.其采集温度及放大温度电路图如下:2.2A\D转换电路-7-AD转换电路采用ADC0809。ADC0809是一种逐次比较型ADC。它是采用CMOS工艺制成的8位8通道A/D转换器,采用28只引脚的双列直插封装,其原理图和引脚图如图所示。ADC0809有三个主要组成部分:256个电阻组成的电阻阶梯及树状开关、逐次比较寄存器SAR和比较器。电阻阶梯和树状开关是ADC0809的一个特点。另一个不特点是,它含有一个8通道单端信号模拟开关和一个地址译码器。地址译码器选择8个模拟信号之一送入ADC进行A/D转换,因此适用于数据采集系统。(b)为引脚图。各引脚功能如下:(1)IN0~IN7是八路模拟输入信号;(2)ADDA、ADDB、ADDC为地址选择端;(3)2-1~2-8为变换后的数据输出端;(4)START(6脚)是启动输入端。(5)ALE(22脚)是通道地址锁存输入端。当ALE上升沿到来时,地址锁存器可对ADDA、ADDB、ADDC锁定。下一个ALE上升沿允许通道地址更新。实际使用中,要求ADC开始转换之前地址就应锁存,所以通常将ALE和TART连在一起,使用同一个脉冲信号,上升沿锁存地址,下降沿则启动转换。(6)OE(9脚)为输出允许端,它控制ADC内部三态输出锁存器向单片机输出转换得到的数据,OE=1时,输出转换得到的数据;0E=0时,输出数据线呈高阻状态。(7)EOC为转换结束信号输出引脚,开始转换时为低电平,结束时为高电平。-8-由于A/D检测到的模拟电压值(2)计算可到的TR值,然后利用如下公式求出温度值:(3)其中,其工作过程:首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。此地址经译码选通8路模拟输入之一到比较器。START上升沿将逐次逼近寄存器复位。下降沿启动A/D转换,之后EOC输出信号变低,指示转换正在进行。直到A/D转换完成,EOC变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。当OE输入高电平时,输出三态门打开,转换结果的数字量输出到数据总线上。256R电阻阶梯控制时序SAR树状开关比较器8位A/D启动时钟8路模拟开关地与址译锁码存8模拟开关3位地址地址锁存允许ADC0809锁三存态缓输冲出器8位输出转换结束(中断)输出允许Vtef(-)Vref(+)VCCGNDADC080915281617181920212223242526271411312111032465798IN3IN4IN5IN6IN7STARTEOC2-5OECLOCKVCCREF(+)GND2-7IN2IN1IN0ADDAADDBADDCALE2-12-22-32-42-8REF(-)2-6(b)(a)功能框图引脚图-9-转换数据的传送A/D转换后得到的数据应及时传送给单片机进行处理。数据传送的关键问题是如何确认A/D转换的完成,因为只有确认完成后,才能进行传送。为此可采用下述三种方式。(1)定时传送方式对于一种A/D转换器来说,转换时间作为一项技术指标是已知的和固定的。例如ADC0809转换时间为128μs,相当于6MHz的MCS-51单片机共64个机器周期。可据此设计一个延时子程序,A/D转换启动后即调用此子程序,延迟时间一到,转换肯定已经完成了,接着就可进行数据传送。(2)查询方式A/D转换芯片由表明转换完成的状态信号,例如ADC0809的EOC端。因此可以用查询方式,测试EOC的状态,即可确认转换是否完成,并接着进行数据传送。(3)中断方式把表明转换完成的状态信号(EOC)作为中断请求信号,以中断方式进行数据传送。不管使用上述哪种方式,只要一旦确定转换完成,即可通过指令进行数据传送。首先送出口地址并以信号有效时,OE信号即有效,把转换数据送上数据总线,供单片机接受。2.3报警电路报警电路由555时基电路和光敏电阻等组成。555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(T-10-R),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。图2555集成电路封装图我们也可以把555电路等效成一个带放电开关的R-S触发器,如图3(A)所示,这个特殊的触发器有两个输入端:阈值端(TH)可看成是置零端R,要求高电平,触发端(TR)可看成是置位端S,要求低电平,有一个输出端Vo,Vo可等效成触发器的Q端,放电端(DIS)可看成是由内部放电开关控制的一个接点,由触发器的Q端控制:Q=1时DIS端接地,Q=0时DIS端悬空。另外还有复位端MR,控制电压端Vc,电源端VDD和地端GND。这个特殊的触发器有两个特点:(1)两个输入端的触发电平要求一高一低,置零端R即阈值端(TH)要求高电平,而置位端s即触发端(TR)则要求低电乎;(2)两个输入端的触发电平使输出发生翻转的阈值电压值也不同,当Vc端不接控制电压时,对TH(R)端来讲,2/3VDD是高电平1,2/3VDD是低电平0:而对TR(S)端来讲,1/3VDD是高电平1,1/3VDD是低电平0。如果在控制端(Vc)上控制电压Vc时,这时上触发电平就变成Vc值,下触发电平就变成1/2Vc值,可见改变控制端的控制电压值就可以改变上下触发电平值。它的功能表见图3(B)所示。-11-图3555电路等效R—S触发器555集成电路有双极型和CMOS型两种。CMOS型的优点是功耗低、电源电压低、输入阻抗高,但输出功率较小,输出驱动电流只有几毫安。双极型的优点是输出功率大,驱动电流达200毫安,其他指标则不如CMOS型的。电路中555时基集成电路接成典型无稳态工作方式,光敏电阻RL与可变电阻器RP构成光控触发回路。当RL无光照射时,呈高电阻状态,RL与RP的分压点即555型时基集成电路的4脚电位较低,若小于0.4V,555时基集成电路被强制复位,电路不振荡,BL无声,VL不发光。若发光二极管通电后发出的光照在RL上时,RL受光激发,电阻值迅速下降,分压点电位升高,当大于0.4V时(少数时基电路为大于1V),强制复位被解除,电路立即产生振荡,BL就发声报警,同时VL发光。此时,人们可以根据实际情况对系统进行降温。2.4调温控制电路-12-如图所示为温度范围控制电路。该电路由降压整流滤波电源电路和温度控制电路两部分组成。其中温度控制电路由555和R1、R2~R4、W1、W2等组成,且R1为一负温度系数的热敏电阻(3kΩ),W1为温度下限预置调节,W2温度上限预置调节,且通过调节W1、W2使555②脚、⑥脚分别置于1/3Vcc、2/3Vcc附近。当温度低于下限温度时,R1的阻值变大,从而使555②脚电位低于1/3Vcc,相应555置位,③脚输出高电平,使发光二极管LED2点亮,继电器J1吸合,触点J1-3接通加热器电源对其进行加热。当温度升到上限温度时,R1的阻值变小,使555⑥脚电位大于2/3Vcc,且②脚的电位必然大于1/3Vcc,相应555复位,③脚输出低电平,发光二极管LED1点亮,继电器J1