管理运筹学复习题第一章一、单项选择题1.用运筹学分析与解决问题的过程是一个(B)A.预测过程B.科学决策过程C.计划过程D.控制过程2.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。可以说这个过程是一个(C)A.解决问题过程B.分析问题过程C.科学决策过程D.前期预策过程3从趋势上看,运筹学的进一步发展依赖于一些外部条件及手段,其中最主要的是(C)A.数理统计B.概率论C.计算机D.管理科学4运筹学研究功能之间关系是应用(A)A.系统观点B.整体观点C.联系观点D.部分观点5运筹学的主要目的在于求得一个合理运用人力、物力和财力的(B)A.最优目标B.最佳方案C.最大收益D.最小成本6.运筹学的主要研究对象是各种有组织系统的(C)A.近期目标与具体投入B.生产计划及盈利C.管理问题及经营活动D.原始数据及相互关系7.运筹学研究和解决问题的优势是应用各学科交叉的方法,其具有的典型特性为(A)A.综合应用B.独立研究C.以计算为主D.定性与定量8.数学模型中,“s·t”表示(B)A.目标函数B.约束C.目标函数系数D.约束条件系数9.用运筹学解决问题的核心是(B)A.建立数学模型并观察模型B.建立数学模型并对模型求解C.建立数学模型并验证模型D.建立数学模型并优化模型10.运筹学作为一门现代的新兴科学,起源于第二次世界大战的(B)A.工业活动B.军事活动C.政治活动D.商业活动11.运筹学是近代形成的一门(C)A.管理科学B.自然科学C.应用科学D.社会科学12.用运筹学解决问题时,要对问题进行(B)A.分析与考察B.分析和定义C.分析和判断D.分析和实验13.运筹学中所使用的模型是(C)A.实物模型B.图表模型C.数学模型D.物理模型14.运筹学的研究对象是(B)A.计划问题B.管理问题C.组织问题D.控制问题二、多项选择题1.运筹学的主要分支包括(ABDE)A.图论B.线性规划C.非线性规划D.整数规划E.目标规划三、简答题1.运筹学的数学模型有哪些缺点?答:(1)数学模型的缺点之一是模型可能过分简化,因而不能正确反映实际情况。(2)模型受设计人员的水平的限制,模型无法超越设计人员对问题的理解。(3)创造模型有时需要付出较高的代价。2.运筹学的数学模型有哪些优点?答:(1)通过模型可以为所要考虑的问题提供一个参考轮廓,指出不能直接看出的结果。(2)花节省时间和费用。(3)模型使人们可以根据过去和现在的信息进行预测,可用于教育训练,训练人们看到他们决策的结果,而不必作出实际的决策。(4)数学模型有能力揭示一个问题的抽象概念,从而能更简明地揭示出问题的本质。(5)数学模型便于利用计算机处理一个模型的主要变量和因素,并易于了解一个变量对其他变量的影响。3.运筹学的系统特征是什么?答:运筹学的系统特征可以概括为以下四点:(1)用系统的观点研究功能关系(2)应用各学科交叉的方法(3)采用计划方法(4)为进一步研究揭露新问题第二章一、单项选择题1.线性规划问题的标准形式中,所有变量必须(A)A.大于等于零B.小于等于零C.等于零D.自由取值2.如果一个线性规划问题有n个变量,m个约束方程(mn),系数矩阵的数为m,则基可行解的个数为(C)A.m个B.n个C.CnmD.Cmn个3.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则该问题有(D)A.无界解B.唯一最优解C.无可行解D.无穷多最优解4.如果某个变量Xj为自由变量,则应引进两个非负变量Xj′,Xj〞,同时令Xj=(B)A.Xj′+Xj〞B.Xj′-Xj〞C.Xj〞-Xj′D.Xj5.图解法适用于求解有关线性规划问题,但该问题中只能含有(B)A.一个变量B.两个变量C.三个变量D.四个变量6.线性规划模型三个要素中不包括(C)A.决策变量B.目标函数C.基D.约束条件7.下列图形中阴影部分构成的集合为凸集的是(A)8.线性规划问题是求极值问题,这是针对(D)A.约束B.决策变量C.秩D.目标函数9.线性规划问题有可行解,则(A)A.必有基可行解B.必有唯一最优解C.无基可行解D.无唯一最优解10.线性规划问题的基可行解与可行域顶点的关系是(D)A.顶点与基可行解无关B.顶点少于基可行解C.顶点与基可行解无关D.顶点多于基可行解11.线性规划问题有可行解,则必有(D)A.系数矩阵B.基C.基本解D.基本可行解12.下列关于可行解,基本解,基可行解的说法错误的是(B)A.可行解中包含基可行解B.可行解与基本解之间无交集C.线性规划问题有可行解必有基可行解D.满足非负约束条件的基本解为基可行解13.在线性规划问题中,基可行解的非零分量所对应的列向量(B)A.线性相关B.线性无关C.非线性相关D.非线性无关14.若目标函数为求max,一个基可行解比另一个基可行解更好的标志是(A)A.使Z更大B.使Z更小C.绝对值更大D.Z绝对值更小15.运筹学中,“LP”表示(C)A.整数规划B.非整数规划C.线性规划D.非线性规划16.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在某集合中进行搜索即可得到最优解。这个集合是(D)A.基B.基本解C.基可行解D.可行域二、多项选择题1.在线性规划的一般表达式中,变量xij可能为(ABE)A.大于等于0B.小于等于0C.大于0D.小于0E.等于02.求解线性规划问题解的结果可能有(ABCDE)A.唯一最优解B.无可行解C.无穷多最优解D.无界解E.无最优3.在线性规划问题中a23表示(AE)A.i=2B.i=3C.i=5D.j=2E.j=34.若线性规划问题的可行域是无界的,则该问题可能(ABCD)A.无最优解B.有最优解C.有唯一最优解D.有无穷多个最优解E.有有限多个最优解5.在线性规划问题的标准形式中,可能存在的变量是(ABC)A.可控变量B.松驰变量C.剩余变量D.人工变量E.非基变量6.若线性规划问题有可行解,则(CDE)A.其可行域一定有界B.其可行域无界C.其可行域是一凸多边形D.其可行域可能有界也可能无界E.有无数可行解三、名词解释1.可行解:在线性规划问题中,凡满足所有约束条件的解称为线性规划问题可行解。2.最优解:满足约束条件而又使目标函数取得极值的解3.可行域:线性规划问题的可行解集合。4.基本解:在线性约束方程组中,对于选定的基B令所有的非基变量等于零,得到的解,称为线性规划问题的一个基本解。5.非基变量:在线性规划问题中,与非基向量相对应变量。6.线性规划问题:就是求一个线性目标函数在一组线性约束条件下的极值问题。7.图解法:对于只有两个变量的线性规划问题,可以用在平面上作图的方法来求解,这种方法称为图解法。四、简答题1.根据以下条件建立线性规划数学模型某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:单位产品消耗资源ABC资源限量原材料1.01.54.02000机械台时2.01.21.01000单位利润101412根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。月销售分别为250,280和120件,问如何安排生产计划,使总利润最大?解:设X1,X2,X3分别设代表三种产品的产量,则线性规划模型为maxZ=10X1+14X2+12X3s·tX1+1.5X2+4X3≤20002X1+1.2X2+X3≤1000200≤X1≤250250≤X1≤280X1,X2,X3≥02.把下列线性规划问题化成标准形式:答:maxZ’=-5x1+2x23.把下列线性规划问题化成标准形式:minZ=2x1-x2+2x3答:4.线性规划数学模型具备哪几个要素?答:⑴求一组决策变量xi或xij的值(i=1,2,…mj=1,2…n)使目标函数达到极大或极小;⑵表示约束条件的数学式都是线性等式或不等式;⑶表示问题最优化指标的目标函数都是决策变量的线性函数5.根据所给条件建立线性规划模型。某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?答:将10米长的钢筋截为3米和4米长,共有以下几种下料方式:ⅠⅡⅢ3米4米021120设X1,X2,X3分别表示采用Ⅰ、Ⅱ、Ⅲ种下料方式的钢筋数,则线性规划模型可写成:minZ=X1+X2+X3s·t2X2+3X3≥902X1+X2≥60X1,X2,X3≥0第三章一、单项选择题1.当已化为标准形的线性规划问题的系数矩阵中仍不存在可行基时,要构造可行基一般可以采取的方法是增加(C)A.松弛变量B.决策变量C.人工变量D.剩余变量2.在线性规划典式中,所有基变量的目标系数为(B)A.MB.0C.1D.-13.在单纯形表的终表中,若若非基变量的检验数有0,那么最优解(A)A.不存在B.唯一C.无穷多D.无穷大4.若在单纯形法迭代中,有两个Q值相等,当分别取这两个不同的变量为入基变量时,获得的结果将是(C)A.先优后劣B.先劣后优C.相同D.会随目标函数而改变5.当线性规划问题的系数矩阵中不存在现成的可行基时,若要构造可行基一般可以采取的方法是增加(C)A.松弛变量B.决策变量C.人工变量D.剩余变量6.若某个约束方程中含有系数列向量为单位向量的变量,则该约束方程不必再引入(C)A.松弛变量B.剩余变量C.人工变量D.自由变量7.求目标函数为极大的线性规划问题时,若全部非基变量的检验数≤O,且基变量中有人工变量时该问题有(B)种类长度A.无界解B.无可行解C.唯一最优解D.无穷多最优解8.单纯形法当中,入基变量的确定应选择检验数(C)A.绝对值最大B.绝对值最小C.正值最大D.负值最小9.线性规划的代数解法主要利用了代数消元法的原理来实现一种转换寻找最优解.这种转换是(C)A.基B.基本解C.基可行解D.最优解10.出基变量的含义是(D)A.该变量取值不变B.该变量取值增大C.由0值上升为某值D.由某值下降为011.在单纯形迭代过程中,若此问题是无界,则有某个δk0对应的非基变量xk的系数列向量Pk(D)A.大于零B.小于零C.大于等于零D.小于等于零12.用大M法求目标函数为极大值的线性规划问题时,引入的人工变量在目标函数中的系数应为(B)A.0B.-1C.1D.-M13.下列说法错误的是(B)A.图解法与单纯形法从几何理解上是一致的B.在单纯形迭代中,进基变量可以任选C.在单纯形迭代中,出基变量必须按最小比值法则选取D.人工变量离开基底后,不会再进基14.入基变量的含义是(C)A.该变量取值不变B.该变量取值增大C.由0值上升为某值D.由某值下降为0值15.在单纯形迭代中,出基变量在紧接着的下一次迭代中立即入基的可能性为(B)A.会B.不会C.可能性很大D.可能性很小二、多项选择题1.下列解中可能成为最优解的有(ABCDE)A.基可行解B.迭代一次的改进解C.迭代两次的改进解D.迭代三次的改进解E.所有检验数均小于等于0且解中无人工变量2.设X(1),X(2)是用单纯形法求得的某一线性规划问题的最优解,则说明(ACDE)A.此问题有无穷多最优解B.该问题是退化问题C.此问题的全部最优解可表示为λX(1)+(1一λ)X(2),其中0≤λ≤1D.X(1),X(2)是两个基可行解E.X(1),X(2)的基变量个数相同3.某线性规划问题,含有n个变量,m个约束方程,(mn),系数矩阵的秩为m,则(ABCDE)A.该问题的典式不超过CNM个B.基可行解中的基变量的个数为m个C.该问题一定存在可行解D.该问题的基至多有CNM=1个E.该问题有111个基可行解三、计算题1.下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量,表中解代入目标函数后得Z=10XlX2X3X4-10b-1fgX32CO11/5Xlade01(1)求表中a~g的值(2)表中给出的解是否为最优解?解:(1)a=2b=0