九年级下册《确定二次函数的表达式》随堂练习

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2.3确定二次函数的表达式1.抛物线y=a(x﹣1)2+4经过点A(﹣1,0),求该抛物线的解析式。2..已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).求抛物线的解析式3..已知抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,3).求抛物线的解析式。4.已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).求抛物线的函数表达式。5.抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x=,求抛物线的解析式。6.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.求抛物线的解析式。参考答案:1.抛物线y=a(x﹣1)2+4经过点A(﹣1,0),求该抛物线的解析式。分析:将A坐标代入抛物线解析式,求出a的值,即可确定出解析式;解:(1)将A(﹣1,0)代入y=a(x﹣1)2+4中,得:0=4a+4,解得:a=﹣1,则抛物线解析式为y=﹣(x﹣1)2+4;2.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).求抛物线的解析式分析:根据抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0),直接得出抛物线的解析式为;y=﹣(x﹣3)(x+1),再整理即可,解答:解:∵抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).∴抛物线的解析式为;y=﹣(x﹣3)(x+1),即y=﹣x2+2x+3,3.已知抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,3).求抛物线的解析式。分析:由于A(﹣1,0)、B(3,0)、C(0,3)三点均在坐标轴上,故设一般式解答和设交点式(两点式)解答均可.解答:解:∵抛物线与y轴交于点C(0,3),∴设抛物线解析式为y=ax2+bx+3(a≠0),根据题意,得,解得,∴抛物线的解析式为y=﹣x2+2x+3.4.已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).求抛物线的函数表达式。分析:把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解和设交点式(两点式)解答均可.;解:(1)∵抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3),∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;5.抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x=,求抛物线的解析式。分析:根据抛物线的对称轴得到抛物线的顶点式,然后代入已知的两点再由待定系数法求解即可;解答:解:设抛物线的解析式把A(2,0)C(0,3)代入得:解得:∴即6..如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.求抛物线的解析式;分析:先求出A、B、C的坐标,再运用待定系数法就可以直接求出二次函数的解析式;解答:解:在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).代入解析式为,解得:.∴抛物线的解析式为y=﹣x2﹣2x+3;

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功