第七讲-协整分析与误差修正模型

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一、格兰杰因果关系检验•自回归分布滞后模型旨在揭示:某变量的变化受其自身及其他变量过去行为的影响。•然而,许多经济变量有着相互的影响关系GDP消费问题:当两个变量在时间上有先导——滞后关系时,能否从统计上考察这种关系是单向的还是双向的?即:主要是一个变量过去的行为在影响另一个变量的当前行为呢?还是双方的过去行为在相互影响着对方的当前行为?格兰杰因果关系检验(Grangertestofcausality)对两变量Y与X,格兰杰因果关系检验要求估计:titmiimiititYXY111(*)titmiimiititXYX211(**)可能存在有四种检验结果:(1)X对Y有单向影响,表现为(*)式中X各滞后项前的参数整体(α)不为零,而(**)式中Y各滞后项前的参数整体(λ)为零;(2)Y对X有单向影响,表现为(**)式中Y各滞后项前的参数(λ)整体不为零,而(*)式中X各滞后项前的参数(α)整体为零;(3)Y与X间存在双向影响,表现为Y与X各滞后项前的参数(α和λ)整体不为零;(4)Y与X间不存在影响,表现为Y与X各滞后项前的参数(α和λ)整体为零。格兰杰检验是通过受约束的F检验完成的。如:titmiimiititYXY111针对中X滞后项前的参数(α)整体为零的假设(X不是Y的格兰杰原因)。分别做包含与不包含X滞后项的回归,记前者与后者的残差平方和分别为RSSU、RSSR;再计算F统计量:)/(/)(knRSSmRSSRSSFUUR如果:FF(m,n-k),则拒绝原假设,认为X是Y的格兰杰原因。注意:格兰杰因果关系检验对于滞后期长度的选择有时很敏感。不同的滞后期可能会得到完全不同的检验结果。因此,一般而言,常进行不同滞后期长度的检验,以检验模型中随机误差项不存在序列相关的滞后期长度来选取滞后期。例检验1978~2006年间中国当年价GDP(X)与居民消费(Y)之间的因果关系。数据选择Granger检验选择检验的序列确定滞后阶数(1阶)检验结果由相伴概率知,在5%的显著性水平下,既拒绝“X不是Y的格兰杰原因”的假设,也拒绝“Y不是X的格兰杰原因”的假设。因此,从1阶滞后的情况看,可支配收入X的增长与居民消费支出Y增长互为格兰杰原因。从检验模型随机干扰项1阶序列相关的LM检验看,以Y为被解释变量的模型的LM=0.897,对应的伴随概率P=0.343,表明在5%的显著性水平下,该检验模型不存在序列相关性;但是,以X为被解释变量的模型的LM=11.37,对应的伴随概率P=0.001,表明在5%的显著性水平下,该检验模型存在严重的序列相关性。检验结果从2阶滞后期开始,检验模型都拒绝了“X不是Y的格兰杰原因”的假设,而不拒绝“Y不是X的原因”的假设。滞后阶数为2或3时,两类检验模型都不存在序列相关性。由赤池信息准则,发现滞后2阶检验模型拥有较小的AIC值。可判断:可支配收入X是居民消费支出Y的格兰杰原因,而不是相反,即国民收入的增加更大程度地影响着消费的增加。二、协整及误差修正模型•随机游走序列Xt=Xt-1+t经差分后等价地变形为Xt=t,由于t是一个白噪声,因此差分后的序列{Xt}是平稳的。•如果一个时间序列经过一次差分变成平稳的,就称原序列是一阶单整(integratedof1)序列,记为I(1)。(一)概念1、单整•一般地,如果一个时间序列经过d次差分后变成平稳序列,则称原序列是d阶单整(integratedofd)序列,记为I(d)。•显然,I(0)代表一平稳时间序列。•现实经济生活中:1)只有少数经济指标的时间序列表现为平稳的,如利率等;2)大多数指标的时间序列是非平稳的,如一些价格指数常常是2阶单整的,以不变价格表示的消费额、收入等常表现为1阶单整。例中国支出法GDP的单整性。经过试算,发现中国支出法GDP是1阶单整的,适当的检验模型为:1212966.0495.025.26108.1174tttGDPGDPtGDP(-1.99)(4.23)(-5.18)(6.42)2R=0.7501LM(1)=0.40LM(2)=1.29例中国人均居民消费与人均国内生产总值的单整性。经过试算,发现中国人均国内生产总值GDPPC是2阶单整的,适当的检验模型为:12360.0ttGDPPCGDPPC(-2.17)2R=0.2778,LM(1)=0.31LM(2)=0.5412367.0ttCPCCPC(-2.08)2R=0.2515LM(1)=1.99LM(2)=2.36同样地,CPC也是2阶单整的,适当的检验模型为:•经济理论指出,某些经济变量间确实存在着长期均衡关系,这种均衡关系意味着经济系统不存在破坏均衡的内在机制,如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状态。假设X与Y间的长期“均衡关系”由式描述:2、长期均衡tttXY10该均衡关系意味着:给定X的一个值,Y相应的均衡值也随之确定为0+1X。(1)Y等于它的均衡值:Yt-1=0+1Xt;(2)Y小于它的均衡值:Yt-10+1Xt;(3)Y大于它的均衡值:Yt-10+1Xt;在时期t,假设X有一个变化量Xt,如果变量X与Y在时期t与t-1末期仍满足它们间的长期均衡关系,则Y的相应变化量由式给出:tttvXY1式中,vt=t-t-1。•在t-1期末,存在下述三种情形之一:•实际情况往往并非如此如果t-1期末,发生了上述第二种情况,即Y的值小于其均衡值,则Y的变化往往会比第一种情形下Y的变化Yt大一些;反之,如果Y的值大于其均衡值,则Y的变化往往会小于第一种情形下的Yt。可见,如果Yt=0+1Xt+t正确地提示了X与Y间的长期稳定的“均衡关系”,则意味着Y对其均衡点的偏离从本质上说是“临时性”的。但一个重要的假设就是:随机扰动项t必须是平稳序列。如果t有随机性趋势(上升或下降),则会导致Y对其均衡点的任何偏离都会被长期累积下来而不能被消除。式Yt=0+1Xt+t中的随机扰动项也被称为非均衡误差(disequilibriumerror),它是变量X与Y的一个线性组合:tttXY10(*)因此,如果Yt=0+1Xt+t式所示的X与Y间的长期均衡关系正确的话,(*)式表述的非均衡误差应是一平稳时间序列,并且具有零期望值,即是具有0均值的I(0)序列。假设Yt=0+1Xt+t式中的X与Y是I(1)序列,如果该式所表述的它们间的长期均衡关系成立的话,则意味着由非均衡误差(*)给出的线性组合是I(0)序列。这时我们称变量X与Y是协整的(cointegrated)。tttXY10如果序列{X1t,X2t,…,Xkt}都是d阶单整,存在向量:=(1,2,…,k),使得:Zt=XT~I(d-b)其中,b0,X=(X1t,X2t,…,Xkt)T,则认为序列{X1t,X2t,…,Xkt}是(d,b)阶协整,记为Xt~CI(d,b),为协整向量(cointegratedvector)。3.协整在中国居民人均消费与人均GDP的例中,该两序列都是2阶单整序列,而且可以证明它们有一个线性组合构成的新序列为0阶单整序列,于是认为该两序列是(2,2)阶协整。由此可见:如果两个变量都是单整变量,只有当它们的单整阶数相同时,才可能协整;如果它们的单整阶数不相同,就不可能协整。三个以上的变量,如果具有不同的单整阶数,有可能经过线性组合构成低阶单整变量。例如,如果存在:)2(~),2(~),1(~IUIVIWttt并且,)0(~)1(~IePcWQIbUaVPtttttt那么认为:)1,1(~,)1,2(~,CIPWCIUVtttt(d,d)阶协整是一类非常重要的协整关系,它的经济意义在于:两个变量,虽然它们具有各自的长期波动规律,但是如果它们是(d,d)阶协整的,则它们之间存在着一个长期稳定的比例关系。例如:前面提到的中国CPC和GDPPC,它们各自都是2阶单整,并且将会看到,它们是(2,2)阶协整,说明它们之间存在着一个长期稳定的比例关系,从计量经济学模型的意义上讲,建立如下居民人均消费函数模型:从协整的定义可以看出:tttGDPPCCPC10变量选择是合理的,随机误差项一定是“白噪声”(即均值为0,方差不变的稳定随机序列),模型参数有合理的经济解释。这也解释了尽管这两时间序列是非稳定的,但却可以用经典的回归分析方法建立回归模型的原因。•从这里,我们已经初步认识到:检验变量之间的协整关系,在建立计量经济学模型中是非常重要的。而且,从变量之间是否具有协整关系出发选择模型的变量,其数据基础是牢固的,其统计性质是优良的。(二)协整检验1、两变量的Engle-Granger检验为了检验两变量Yt,Xt是否为协整,Engle和Granger于1987年提出两步检验法,也称为EG检验。第一步,用OLS方法估计方程:Yt=0+1Xt+t并计算非均衡误差,得到:tttttYYeXYˆˆˆˆ10第二步,检验et的单整性。如果et为稳定序列,则认为变量(Yt,Xt)为(1,1)阶协整;如果et为1阶单整,则认为变量(Yt,Xt)为(2,1)阶协整;……et的单整性的检验方法仍然采用ADF检验由于协整回归中已含有截距项,则检验模型中无需再用截距项。如使用模型1tpiititteee11进行检验时,拒绝零假设H0:=0,意味着误差项et是平稳序列,从而说明X与Y间是协整的。•例检验中国居民人均消费水平CPC与人均国内生产总值GDPPC的协整关系。在前文已知CPC与GDPPC都是I(2)序列,而它们的回归式:ttGDPPCCPC45831.0764106.49R2=0.9981通过对该式计算的残差序列作ADF检验,得适当检验模型311ˆ27.2ˆ49.1ˆ55.1ˆtttteeee(-4.47)(3.93)(3.05)LM(1)=0.00LM(2)=0.00t=-4.47-3.75=ADF0.05,拒绝存在单位根的假设,残差项是稳定的,因此中国居民人均消费水平与人均GDP是(2,2)阶协整的,说明了该两变量间存在长期稳定的“均衡”关系。2、多变量协整关系的检验—扩展的E-G检验多变量协整关系的检验要比双变量复杂一些,主要在于协整变量间可能存在多种稳定的线性组合。假设有4个I(1)变量Z、X、Y、W,它们有如下的长期均衡关系:tttttYXWZ3210(*)其中,非均衡误差项t应是I(0)序列:tttttYXWZ3210(**)然而,如果Z与W,X与Y间分别存在长期均衡关系:tttvWZ110tttvYX210则非均衡误差项v1t、v2t一定是稳定序列I(0)。于是它们的任意线性组合也是稳定的。例如:tttttttYXWZvvv110021(***)一定是I(0)序列。由于vt象(**)式中的t一样,也是Z、X、Y、W四个变量的线性组合,由此(***)式也成为该四变量的另一稳定线性组合。(1,-0,-1,-2,-3)是对应于(**)式的协整向量,(1,-0-0,-1,1,-1)是对应于(***)式的协整向量。对于多变量的协整检验过程,基本与双变量情形相同,即需检验变量是否具有同阶单整性,以及是否存在稳定的线性组合。在检验是否存在稳定的线性组合时,需通过设置一个变量为被解释变量,其他变量为解释变量,进行OLS估计并检验残差序列是否平稳。检验程序:如果不平稳,则需更换被解释变量,进行同样的OLS估计及相应的残差项检验。当所有的变量都被作为被解释变量检验之后,仍不能得到平稳的残差项序列,则认为这些变量间不存在(d,d)阶协整。同样地,检验残差项是否平稳的DF

1 / 74
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功