1.(2014。浙江台州中学期中)公差不为0的等差数列{an}的前21项的和等于前8项的和,若a8+ak=0则k等于()A.20B.21C.22D.23选C,K=22;a1+a2+.......+a8=a1+a2+.......................+a21则a9+a10+a11+.......+a21=0而a9+a10+a11……+a21=0所以a9+a21=a10+a20=……=0所以a8+a22=a9+a21=0k=22。2.(2014.浙江杜桥中学期中)已知等比数列{an}中a3=16,a4=8,则a8=()A.128B.64C.1/4D.1/23.已知{an}是等比数列,对任意n∈N*,an0恒成立且a1a3+2a2a5+a4a6=36,则a2+a5等于()A.36B.±6C.-6D.6选D∵∀n∈N*,an>0∴a1a3+2a2a5+a4a6=(a2+a5)2=36,∴a2+a5=6.4.设等差数列{an}的前n项和为Sn,若2a8=6+a11,则S9的值等于A.54B.45C.36D.27选A∵a5+a11=2·a8∴a5+a11=6+a11∴a5=6∴S9=9·a5=545.已知正项等比数列{an}的前n项和为Sn,,若S13=256/3,1/a1+1/a2+1/a3+…+1/a13=8/3,则log2(a6a8)的值为多少()A.4B.5C.16D.32选BS13=256/3=a1(1-q^13)/1-q;1/a1+1/a2+1/a3+...+1/a13=8/3=(1/a1)(1-(1/q)^13)/(1-(1/q))=(1/a1)(q^13-1)/(q^12(q-1));两式作比:a1^2*q^12=(a1*q^6)^2=a7^2=256/8=32得log2(a6a8)=log2(a7^2)=log2(32)=56.已知{an}是首项为1的等差数列,Sn是{an}的前n项和,且S5=a13,则数列{1/anan+1}的前五项和为()A.10/11B.5/11C.4/5D.2/5选B设等差数列{an}的公差为d,∵S5=a13,∴5×1+5*4/2d=1+12d,解得d=2.∴an=a1+(n-1)d=1+2(n-1)=2n-1.∴1/anan+1=1/(2n-1)(2n+1)=1/2(1/2n-1-1/2n+1)∴数列{1/anan+1}的前n项和Tn=1/2[(1-1/3)+(1/3-1/5)+…+(1/2n-1-1/2n+1)]=1/2(1-1/2n+1)=n/2n+1∴T5=5/2*5+1=5/117.已知数列{an}的通项公式an=2^n(3n-13),则数列的前n项和Sn的最小值是()A.S3B.S4C.S5D.S6选Ban是个增数列,所以Sn取最小值时,应有an0,an+10因为2^n恒大于零,所以3n-130,3(n+1)-130,解得10/3n13/3,因为n∈N*,所以n=48.设等差数列{an}的公差为d,前n项和为Sn,a2=1,前6项和的方差为35/3,则a3S3的值为()A.-9B.3C.±9D.9选D∵等差数列{an},∵a1,a2,a3,a4,a5,a6是等差数列,∴这组数据的平均数是M=(a3+a4)/2=(a2+d+a2+2d)/2=a2+3/2d,又∵(a1–M)^2=[a1–(a2+3/2d)]^2=[a2–d-(a2+3/2d)]=(-5/2d)^2同理可得(a2–M)^2=(-3/2d)^2(a3–M)^2=(-1/2d)^2(a4–M)^2=(1/2d)^2(a5–M)^2=(3/2d)^2(a6–M)^2=(5/2d)^2∴1/6((a1–M)^2+(a2–M)^2+(a3–M)^2+(a4–M)^2+(a5–M)^2+(a6–M)^2)=1/6((-5/2d)^2+(-3/2d)^2+(-1/2d)^2+(1/2d)^2+(3/2d)^2+(5/2d)^2)=1/6*70/4d^2=35/3解得d=±2当d=2是a1=a2-d=-1,a3=a2+d=3,S3=a1+a2+a3=3,∴a3S3=3*3=9当d=-2时a1=a2-d=3,a3=a2+d=-1,S3=a1+a2+a3=3,∴a3S3=-1*3=-3选项中没有所以选D9.已知数列{an}是1为首项,2为公差的等差数列,{bn}是1为首项,2为公比的等比数列,设cn=abn,Tn=c1+c2+…+cn(n∈N*),则当Tn2013时,n的最小值是()A.7B.9C.10D.11选C解析:依题意可求得an=2n-1;bn=2n-1,cn=abn=a2^(n-1)=2.2^(n-1)-1=2^n-1Tn=2^1-1+2^2-1+2^3-1+…+2^n-1=2(1-2^n)/(1-2)-n=2^(n+1)-2则Tn2013即2^(n+1)-22013,n=9时Tn=10242013,n=10时,n=20482013所以n=1010.已知正项等比数列{an}满足a7=a6+2a5,若存在两项am,an使得根号am*an=4a1,则,1/m+9/n的最小值为()A.8/3B.11/4C.14/5D.17/6设等比数列{an}的首项为a1,公比为q,∵a7=a6+2a5,则a1•q6=a1•q5+2a1•q4即q2-q-2=0,解得q=2或q=-1(舍去)若根号下am*an=4a1则am*an=16a1^2即a1q^(m-1)*a1q^(n-1)=16a1^2,即2^(m+n-2)=2^4所以m+n-2=4,m+n=6则6(1/m+9/n)=(m+n)(1/m+9/n)=10+(n/m+9m/n)=10+2√9=10+3=13则1/m+9/n=13/611.已知数列{an},{bn}满足a1=1,且an,an+1是函数f(x)=x^2-bnx+2^n的两个零点,则b10等于()A.24B.32C.48D.64选D;根据韦达定理,an+a(n+1)=bn,an*a(n+1)=2^n通过第二个式子可以推一下:a2=2/a1=2,a3=4/a2=2,a4=8/a3=4……最后得到a10=32,a11=32,那么b10=a10+a11=6412.已知函数f(x)=x^2+bx的图像在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{1/f(n)}的前n项和为Sn,则S2011的值为()A.2010/2011B.2009/2010C.2011/2012D.2012/2013选C;f’(x)=2x+b直线3x-y+2=0的斜率为3所以f’(1)=2+b=3,得:b=1故f(x)=x^2+x设an=1/f(n)=1/(n^2+n)=1/n-1/(n+1)所以Sn=(1-1/2)+(1/2-1/3)+...+(1/n-1/(n+1))=1-1/(n+1)=n/(n+1)所以S2011=2011/2012二填空题13.已知数列{an}为等比数列,若a1+a3=5,a2+a4=10,则公比q=_______q=2解析:a1+a3=a1+a1*q²=5a2+a4=a1*q+a1*q³=10联解上面的方程组解得a1=1,q=214.已知等差数列{an}和等比数列{bn}满足a1=b1=-2,a2=b2=4,则满足an=bn的n的所有取值构成的集合是___________{1,2,4}解析:an=a1+(n-1)d,bn=b1.q^(n-1);a1=b1=-2,a2=b2=4即a1+d=b1q=4解得d=6,q=-2,所以an=-2+6(n-1)=6n-8,bn=(-2)^n,又an=bn所以n={1,2,4}15.在等比数列{an}中,若a5+a6+a7+a8=15/8,a6a7=-9/8,则1/a5+1/a6+1/a7+1/a8=___________-5/3解析:a5+a6+a7+a8=a1q^4(1+q+q^2+q^3)=15/8a6a7=a1^2q^11=-9/8所以1/a6a7=1/a1^2q^11=-8/9所以(a5+a6+a7+a8)(1/a6a7)=15/8*(-8/9)=-5/3即1/a8+1/a7+1/a6+1/a5=-5/316.已知数列{an},若点(n,an)(n∈N*)在直线y-3=k(x-6)上,则数列{an}的前11项和S11=______33解析:∵若点(n,an)(n∈N*)在直线y-3=k(x-6)上∴an-3=k(n-6)∴an=kn+3-6k∴数列{an}是等差数列∴S11=11(a1+a11)/2=11(3-5k+11k+3-6k)/2=3317.在公差不为0的等差数列{an}中,a4=10,且a3,a6,a10成等比数列(1)求数列{an}的通项公式(2)设bn=2^an(n∈N*),求数列{bn}的前n项和解:(Ⅰ)设数列{an}的公差为d,又a4=10,可得a3=10-d,a6=10+2d,a10=10+6d由a3,a6,a10成等比数列得a3.a10=a6^2即(10-d)(10+6d)=(10+2d)^2整理得10d^2-10d=0,解得d=0或d=1由d不等于0可得d=1a1=a4-3d=10-3*1=7所以an=a1+(n-1)d=n+6(Ⅱ)由2(*)nanbnN,6nan,可得62nnb.所以1612128b.因为716222nnnnbb,所以数列nb是首项为128,公比为2的等比数列.所以nb的前n项和公式为7128(12)212812nnnS18.Sn表示等差数列{an}的前n项的和,且S4=S9,a1=-12(1)求数列的通项an及Sn(2)求和Tn=|a1|+|a2|+…+|an|(1)491,12,4(12)69(12)362SSadddQ2122(1)214,12(1)13nnannSnnnnn(2)令2140nan,得7n;当7n时,12(nTaa2)13nnaSnn当8n时0na12(nTaa78)(aa27)21384nnaSSnn19.已知等比数列{an}中,公比q∈(0,1),a2+a4=5/4,a1a5=1/4,设bn=1/2nan(n∈N*)(1)求数列{an}的通项公式(2)求数列{bn}的前n项和Sn解(1)由题意知a2a4=a1a5=1/4又a2+a4=5/4联立方程∵q∈(0,1)∴a2a4∴解得a2=1,a4=1/4∴q=1/2,a1=2∴an=2*(1/2)^(n-1)=(1/2)^(n-2)(2)由(1)知,an=(1/2)^(n-2)所以bn=n(1/2)^(n-1)所以Sn=1*(1/2)^0+2*(1/2)^1+3*(1/2)^2+…+(n-1)(1/2)^(n-2)+n(1/2)^(n-1)①1/2Sn=1*(1/2)^1+2*(1/2)^2+3*(1/2)^3+…+(n-2)(1/2)^(n-2)+(n-1)(1/2)^(n-1)+n(1/2)^n②1-2得:1/2Sn=(1/2)^0+(1/2)^1+(1/2)^2+…(1/2)^(n-2)+(1/2)^(n-1)-n(1/2)^n=1*[1-(1/2^n)]/(1-1/2)-n(1/2)^n∴Sn=4-(1/2)^(n-2)-n(1/2)^(n-1)=4-(n+2)(1/2)^(n-1)20.已知数列{an}的前n项和为Sn,Sn=2an-2(1)求数列{an}的通项公式(2)设bn=an*log2[a(n+1)],求数列{bn}的前n项和Tn(1)当n=1时,S1=a1=2a1-2解得a1=2,当n=2时,an=Sn-Sn-1=2an-2-(2a(n-1)-2)即an/an-1=2,所以数列{an}是以2为公比的等比数列所以an=2^n(2)bn=2^n*log2[2^(n+1)]=(n+1)*2^nTn=2*2+3*2^2+…+n*2^(n-