浙江省小学数学教师招聘考试说明一、考试性质浙江省教师招聘考试是为全省教育行政部门招聘教师而进行的选拔性考试,其目的是为教育行政部门录用教师提供智育方面的参考。各地根据考生的考试成绩,结合面试情况,按已确定的招聘计划,从教师应有的素质、文化水平、教育技能等方面进行全面考核,择优录取。因此,全省教师招聘考试应当具有较高的信度、效度、区分度和适当的难度。《考试说明》主要考查应试者大学专科小学数学教育专业应具备的数学基础知识和基本能力,要求考生比较系统地理解和掌握从事小学数学教学工作必须具备的数学专业基础知识(有关小学数学教学内容和高等数学中对应于小学数学内容最基本知识)、教法技能知识和小学数学教学论考试在考查知识的同时,注重能力立意,突出对灵活运用理论知识解决实际问题的能力的测试。二、考核目标和要求1.知识要求,依次为了解、理解和掌握、灵活和综合运用三个层次(1)了解:要求对所列知识的含义及其背景有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它。(2)理解和掌握:要求对所列知识内容有较深刻的理论认识,能够解释、举例或变形、推断,并能利用知识解决有关问题。(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题。2.能力要求能力包括思维能力、运算能力、空间想象能力以及实践能力和创新能力。(1)思维能力:会对问题或资料进行观察、比较、分析、综合抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述。(2)运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。(3)空间想象能力:根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形元素及其相互关系;能对图形进行分解、组合与变换;会运用图形与图表等手段形象地揭示问题的本质。(4)实践能力:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息进行资料进行归纳、整理和分类,对实际问题抽象为数学问题,建立数学模型;能运用相关的数学方法解决问题并加以验证,能运用数学语言正确地表述和说明。(5)创新能力:能选择有效的教学方法和手段,对教学信息、情境进行分析;综合运用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出小学数学教学中的新问题,找到解决问题的途径、方法和手段,创造性地解决教学问题。3.技能要求:技能要求主要是教学技能。要求掌握小学数学知识相关的基础理论知识和教育学、心理学和现代教育技术的基础理论知识,并能运用这些理论知识分析教材、设计教学方案。三、考试范围全日制普通高中数学:简易逻辑、数列、不等式、直线和圆的方程、圆锥曲线方程、直线、平面、简单几何体。数学归纳法、概率与统计。高等数学:集合、函数、极限、导数、积分、向量代数。小学数学知识:数与代数、空间与图形、统计与概率、解决问题。小学数学教材教法研究:小学数学知识的相关基础理论知识、小学数学教学法。三、考试范围与要求(一)基础知识部分高等数学部分1.数列考试内容:数列。等差数列及其通项公式。等差数列前n项和公式。等比数列及其通项公式。等比数列前n项和公式。考试要求:(1)理解数列的概念,理解数列通项公式的意义。了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。2.不等式考试内容:不等式。不等式的基本性质。不等式的证明。不等式的解法。含绝对值的不等式。考试要求:(1)理解不等式的性质及其证明。(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。(3)了解分析法、综合法、比较法证明简单的不等式。(4)掌握简单不等式的解法。3.直线和圆的方程考试内容:直线的倾斜角和斜率。直线方程的点斜式和两点式。直线方程的一般式。两条直线平行与垂直的条件。两条直线的交角。点到直线的距离。曲线与方程的概念。由已知条件列出曲线方程。圆的标准方程和一般方程。考试要求:(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式。掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式。能够根据直线的方程判断两条直线的位置关系。(3)了解解析几何的基本思想,了解坐标法。(4)掌握圆的标准方程和一般方程。4.圆锥曲线方程:考试内容:椭圆及其标准方程。椭圆的简单几何性质。双曲线及其标准方程。双曲线的简单几何性质。抛物线及其标准方程。抛物线的简单几何性质。考试要求:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质。(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质。(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质。(4)了解圆锥曲线的初步应用。5.直线、平面、简单几何体考试内容:平面及其基本性质。平面图形直观图的画法。空间两直线、两平面、直线与平面的位置关系。多面体。正多面体。棱柱。棱锥。球。考试要求:(1)理解平面的基本性质,会用斜二测画法画水平放置的平面图形的直观图。了解空间两直线、两平面、直线与平面的几种位置关系,能够画出空间两条直线、直线和平面的各种位置关系的图形。能够根据图形想象它们的位置关系。(2)了解多面体、凸多面体的概念,了解正多面体的概念。(3)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。掌握柱体的体积公式、正棱柱表面积的计算。(4)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。掌握锥体的体积公式、正棱锥表面积的计算。(5)了解球的概念,掌握球的性质,掌握球的表面积公式、体积公式。6.数学归纳法考试内容:数学归纳法。数学归纳法的应用。考试要求:理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。7.概率与统计考试内容:随机事件的概率。等可能性事件的概率。互斥事件有一个发生的概率。相互独立事件同时发生的概率。独立重复试验。离散型随机变量的分布列。离散型随机变量的期望值和方差。抽样方法。总体分布的估计。正态分布。考试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义。(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。(4)会计算事件在n次独立重复试验中恰好发生k次的概率。(5)了解离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列。(6)了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。(7)会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。(8)会用样本频率分布去估计总体分布。8.集合考试内容:集合。区间。邻域。考试要求:(1)理解集合的含义,掌握元素与集合的属于、不属于关系。掌握集合的表示方法。(2)理解集合之间包含与相等的含义,了解全集与空集的含义。(3)理解两个集合的并集、交集、补集的含义。(4)理解区间、邻域的定义。掌握区间、邻域的表示方法。9.函数考试内容:映射。函数概念及其表示。函数的有界性、单调性、奇偶性、周期性。反函数与复合函数。基本初等函数及其图像。有理指数幂的运算性质。对数的运算性质。同角的三角函数的基本关系式。三角函数的诱导公式。两角和与差、二倍角的正弦、余弦、正切公式。初等函数。考试要求:(1)了解映射的概念。掌握函数的定义、函数的二要素。掌握定义域的确定和计算。会求反函数。(2)理解函数有界性、单调性、奇偶性、周期性的概念,掌握判断一些简单函数的有界性、单调性、奇偶性、周期性的方法。(3)了解复合函数的概念,会将复合函数分解成简单函数,反之,把简单函数组合成复合函数。(4)理解分数指数幂的概念,掌握有理指数幂的运算性质。理解对数的概念,掌握对数的运算性质。(5)理解三角函数的概念,掌握同角三角函数的基本关系式,正弦、余弦的诱导公式,两角和与差、二倍角的正弦、余弦、正切公式。掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。(6)掌握基本初等函数的定义(三角函数重点掌握正弦、余弦、正切、余切。反三角函数重点掌握arcsina、arccosoa、arctana、arccota)、性质和图像。了解初等函数的概念。(7)能够运用基本初等函数的性质解决某些简单的实际问题。10.极限考试内容:数列的极限。函数的极限。极限的四则运算和两个重要极限。连续函数。考试要求:(1)理解数列极限、函数极限的定义。(2)掌握极限的四则运算和两个重要极限,会求数列的极限和函数的极限。(3)掌握函数连续的定义。掌握函数有定义、有极限、连续之间的关系。能正确判断函数的连续区间或间断点的位置,尤其是分段函数在分段点上的连续性。(4)了解闭区间上连续函数的性质及其应用。(5)掌握无穷大量与无穷小量的定义及无穷小量阶的比较。11.导数考试内容:导数的概念。函数的和、差、积、商的求导法则。复合函数的求导法则。二阶导数。隐函数的导数。函数的微分。导数的简单应用。考试要求:(1)掌握导数的定义、几何意义。(2)掌握基本求导公式,并能熟练运用导数的四则运算法则、复合函数求导法则、隐函数求导法则求初等函数的导数。(3)了解二阶导数的定义及求法。(4)了解微分的定义,基本初等函数的微分公式与微分的运算法则。(5)理解可导、可微与连续之间的关系。(6)了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。12.积分考试内容:不定积分的概念、性质。定积分的概念、性质。牛顿一莱布尼茨公式。二重积分的概念与性质。考试要求:(1)了解不定积分的定义、性质。掌握基本积分表。会用不定积分的性质和基本积分公式求简单函数的不定积分。(2)理解定积分的定义、性质、几何意义。掌握牛顿一莱布尼茨公式。会用定积分的性质和牛顿一莱布尼茨公式求简单函数的定积分。(3)了解二重积分的定义、几何意义。(4)理解用定积分、二重积分求曲边梯形的面积、曲顶柱体的体积的思想方法。13.平面向量考试内容:空间直角坐标系。向量及其加减法。向量与数的乘法。向量的坐标表示。数量积。向量积。考试要求:(1)掌握空间直角坐标系、空间两点问的距离公式。(2)掌握向量概念、向量的几何表示和坐标表示。(3)掌握向量加法、减法、向量与数的乘法、两个向量的数量积、两个向量的向量积的定义、性质、运算规则。14.整数的整除性考试内容:整除。质数与合数。最大公约数与最小公倍数。算术基本定理。考试要求:(1)了解整数对加、减、乘的封闭性,会利用整数对加、减、乘的封闭性讨论问题。(2)掌握整除、约数、倍数的定义,会用定义证明整除问题。(3)掌握带余除法(被除数、除数、不完全商、余数)的定义、带余除法表达式。(4)掌握奇数、偶数的定义。掌握“奇数≠偶数”,会利用这个|生质及“奇偶分析法”分析问题。(5)掌握被2,3,4,5,8,9,11整除的数的特征。(6)掌握质数、合数、质因数、最大公约数、最小公倍数、互质、两两互质的定义。(7)理解算术基本定理。会将自然数分解质因数,写出自然数的标准分解式。(8)会求两个数的最大公约数。会求几个整数的最小公倍数。(9)会解最大公约数、最小公倍数的应用题。二、小学数学学科部分1、数与代数(1)数的认识①掌握整数、分数、小数和百分数的意义和读、写法,能按照要求进行数的改写和求近似数;掌握数位和数级的顺序、名称及计数单位间的关系;会运用灵活的方法比较分数、小数和百分数的大小。②理解因数、倍数、奇数、偶数、质数、合数、公因数、互质数等概念,能运用分解质因数的方法求最大公约数和最小公倍数;