概率论与数理统计期末试卷及答案(最新6)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1华南理工大学期末试卷《概率论与数理统计》试卷A卷注意事项:1.考前请将密封线内各项信息填写清楚;2.解答就答在试卷上;3.考试形式:闭卷;4.本试卷共八大题,满分100分,考试时间120分钟。题号一二三四五六七八总分得分评卷人注:标准正态分布的分布函数值(2.33)=0.9901;(2.48)=0.9934;(1.67)=0.9525一、选择题(每题3分,共18分)1.设A、B均为非零概率事件,且AB成立,则()A.P(AB)=P(A)+P(B)B.P(AB)=P(A)P(B)C.P(A︱B)=)()(BPAPD.P(A-B)=P(A)-P(B)2.掷三枚均匀硬币,若A={两个正面,一个反面},则有P(A)=()A.1/2B.1/4C.3/8D.1/83.对于任意两个随机变量和,若E()=EE,则有()A.D()=DDB.D(+)=D+DC.和独立D.和不独立4.设P(x)=],0[,0],0[,sin2AxAxx。若P(x)是某随机变量的密度函数,则常数A=()A.1/2B.1/3C.1D.3/25.若1,2,…,6相互独立,分布都服从N(u,2),则Z=6122)(1iiu的密度函数最可能是()2A.f(z)=0,00,1612/2zzezzB.f(z)=zez,12112/2C.f(z)=zez,12112/2D.f(z)=0,00,1612/2zzezz6.设(,)服从二维正态分布,则下列说法中错误的是()A.(,)的边际分布仍然是正态分布B.由(,)的边际分布可完全确定(,)的联合分布C.(,)为二维连续性随机变量D.与相互独立的充要条件为与的相关系数为0二、填空题(每空3分,共27分)1.设随机变量X服从普阿松分布,且P(X=3)=234e,则EX=。2.已知DX=25,DY=36,XYr=0.4,则cov(X,Y)=________.3.设离散型随机变量X分布率为P{X=k}=5Ak)21((k=1,2,…),则A=.4.设表示10次独立重复试验中命中目标的次数,每次射中目标的概率为0.6,则2的数学期望E(2)=.5.设随机变量的分布函数F(x)=0,00,1xxex(﹥0),则的密度函数p(x)=______________,E=,D=.6.设X~N(2,2),且P{2X4}=0.3,则P{X0}=37.袋中有50个乒乓球,其中20个黄的,30个白的。现在两个人不放回地依次从袋中随机各取一球,则第二人取到黄球的概率是。三、(本题8分)在房间里有10个人,分别佩戴从1到10号的纪念章,任选3人纪录其纪念章的号码,试求下列事件的概率:(1)A=“最小号码为6”;(2)B=“不含号码4或6”。四、(本题12分)设二维随机变量(,)具有密度函数其它,00,0,),()(2yxCeyxpyx试求(1)常数C;(2)P(+1);(3)与是否相互独立?为什么?(4)和的数学期望、方差、协方差。五、(本题8分)已知产品中96%为合格品。现有一种简化的检查方法,它把真正的合格品确认为合格品的概率为0.98,而误认废品为合格品的概率为0.05.求在这种简化检查下被认为是合格品的一个产品确实是合格品的概率?4六、(本题8分)一个复杂的系统由100个相互独立起作用的部件所组成。在运行期间,每个部件损坏的概率为0.1,而为了使整个系统正常工作,至少必须有85个部件工作。求整个系统正常工作的概率。七、(本题12分)有一类特定人群的出事率为0.0003,出事赔偿每人30万元,预计有500万以上这样的人投保。若每人收费M元(以整拾元为单位,以便于收费管理。如122元就取为130元、427元取成430元等),其中需要支付保险公司的成本及税费,占收费的40%,问M至少要多少时才能以不低于99%的概率保证保险公司在此项保险中获得60万元以上的利润?八、(本题7分)叙述大数定理,并证明下列随机变量序列服从大数定理。nnn/1~n/210nn/1,n=2,3,4…2005级概率论与数理统计试卷A卷参考答案一、1.C注释:由“AB成立”得P(A)=P(AB)()()(|)()()PABPAPABPBPB故52.C3.B注释:参考课本86页4.B2sin1Axdx0注释:?5.6.BA项参见课本64页,D项参见课本86页二、1.2注释:若X服从Poisson分布,则EX=,DX=。(课本84页)2.12注释:cov(X,Y)=rXYDXDY。(参考课本86页)3.1/5注释:运用等比求和公式S=1(1)1naqq4.38.4注释:22()(),(,),,EDEBnpEnpDnpq对于5.p(x)=,00,0xexx,211,ED6.0.2注释:类似2006级试卷填空题第6题7.2/5三、(1)1/20;(2)14/15注释:(1)P(A)=224431078910CCC,表示从、、、这四个数中选两个;(2)B“三个号码中既含4又含6”四、(1)C=4;(2)112()-200{1}41-3e;xxyPdxedy(3)222__02__0(),()0_____00_____0()()(,),xyexeypxpyxypxpypxy因故与独立?(4)622220022112,2221()41124xxExedxExedxDEEED与独立,所以cov(,)=0故同理,,五、0.9979注释:运用全概率公式,类似2006级试卷第三题六、0.9525100(100,0.9),))85{85)1)1(1.67)(1.67)0.9525XXBPX注释:设这个部件中没有损坏部件数为,则服从二项分布且有______EX=np=1000.9=90,DX=npq=900.1=9由拉普拉斯定理,b-EXa-EXP{aXb}((DXDX故至少须有个部件工作的概率为:85-90(9七、M=160,X注释:设出事人数为则有XB(5000000,0.0003)EX=50000000.0003=1500,DX=50000000.00030.99971500若要以99%的概率保证保险公司在此项保险中获得60万元以上的利润,则P{5000000M(1-40%)-X300000600000}99%得P{X10M-2}99%X-150010M-2-1500故需满足P{15001}99%99%2.33159.22,160MM50010M-2-1500即()()1500解得故八、(1)课本98页辛欣大数定理(2)722222n11221222211()0(1)()0()()[()]()211_____0(1)()()211,2,3,,()()0112)()2nnnnnnnknkkknnkkEnnnnnDEEEnnnnnkEEnnDnnnn由于令则______________________D(由契比雪夫2n0,2()|}1lim()|}1}nnnnnEnE不等式,对任意的有________________P{|故有P{|即{服从大数定律诚信应考,考试作弊将带来严重后果!华南理工大学期末考试《概率论与数理统计》试卷A卷(2学分用)注意事项:1.考前请将密封线内各项信息填写清楚;2.可使用计算器,解答就答在试卷上;3.考试形式:闭卷;4.本试卷共八大题,满分100分。考试时间120分钟。题号一二三四五六七八总分得分评卷人注:标准正态分布的分布函数值9922.0)42.2(9938.0)5.2(9901.0)33.2(,8413.0)0.1(一、选择题(每题3分,共15分)1、设X~N(μ,σ2),则概率P(X≤1+μ)=()A)随μ的增大而增大;B)随μ的增加而减小;C)随σ的增加而增加;D)随σ的增加而减小._____________________…姓名学号学院专业座位号(密封线内不答题)……………………………………………………密………………………………………………封………………………………………线……………………………………线………………………………………82、设A、B是任意两事件,则)(BAPA))()(BPAPB))()()(ABPBPAPC))()(ABPAPD))()()(ABPBPAP3、设是一个连续型变量,其概率密度为(x),分布函数为F(x),则对于任意x值有()A)P(=x)=0B)F(x)=(x)C)P(=x)=(x)D)P(=x)=F(x)4、对于任意两个随机变量X和Y,若()()()EXYEXEY,则()A)()()()DXYDXDYB)()()()DXYDXDYC)X和Y独立D)X和Y不独立5、设的分布律为012p0.250.350.4而xPxF)(,则)2(F()A)0.6,B)0.35,C)0.25,D)0二、填空题(每空3分,共21分)1、某射手有5发子弹,射一次命中的概率为0.75。如果命中了就停止射击,否则就一直射到子弹用尽。则耗用子弹数的数学期望为。2、已知DY=36,cov(X,Y)=12,相关系数rXY=0.4,则DX=。3、三次独立的试验中,成功的概率相同,已知至少成功一次的概率为6437,则每次试验成功的概率为。94、设),4(~),,3(~pBYpBX,且X、Y相互独立,则YX服从二项分布。5、若)5,0(~UX,方程04522XXxx有实根的概率。6、设),11(~532NX,且P{2X4}=0.15,则P{X0}=_________7、相关系数是两个随机变量之间程度的一种度量。10三、(10分)设一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的次品率依次为0.1,0.2,0.3,从这10箱中任取一箱,再从这箱中任取一件,求这件产品为正品的概率。若取出的产品为正品,它是甲厂生产的概率是多少?11四、(8分)离散型随机变量X的分布函数31318.0113.010)(xxxxxF,求X的分布列及X的数学期望。12五、(15分)设随机变量X的概率密度函数为:xexfx,21)(求:(1)X的概率分布函数,(2)X落在(-5,10)内的概率;(3)求X的方差。13六、(10分)设由2000台同类机床各自独立加工一件产品,每台机床生产的次品率均服从(0.005,0.035)上的均匀分布。问这批产品的平均次品率小于0.025的概率是多少?14七、(15分)设二维随机变量(X,Y)在区域:12222byax上服从均匀分布。(1)求(X,Y)的联合概率密度及边缘概率密度;(2)已知4,25DYDX,求参数a、b;(3)判断随机变量X与Y是否相互独立?15八、(6分)设随机变量X服从(0,1)上均匀分布,Y服从参数为=5的指数分布,且X,Y独立。求Z=min{X,Y}的分布函数与密度函数。2006级概率论与数理统计试卷A卷参考答案一、1.D1(1)()XuuuPXuP注释:=1()2.C注释:参考课本第8页3.A注释:连续型随机变量在某一个点上的概率取值为零,故A正确?B项是否正确4.B注释:参考课本86页5.A二、1.1.33(或者填13591024)2.2

1 / 50
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功