·1·曲线系方程的共交点在解题中的应用共交点的曲线系:设两已知曲线S1:0)y,x(f,S2:0)y,x(g,(因为方程组0)y,x(g0)y,x(f的公共解肯定满足方程0)y,x(g)y,x(f,其中λ为任意常数,所以此方程对应的曲线肯定过S1和S2的交点。)因此可设过两曲线S1、S2的交点的曲线系方程是:0)y,x(g)y,x(f,但曲线系中不包括S2。这种共交点的曲线系方程也具有广泛的应用,我们常见的求轨迹问题是一个定位描述的问题,只要给多一个条件,就可以确定其轨迹方程。本文尝试利用共交点的曲线系方程解题方面作一些探讨。一、共交点曲线系方程的一般性运用例1:求经过两圆0yx2y3x3:C0yx3yx:C222221和的交点及点P(1,1)的圆的方程。分析:因为C1、C2是圆的方程,所以C1+λC2=0是过两圆交点的圆系方程。代入交点的坐标,解出即可。例2:求经过两条曲线0yx3yx22和0yx2y3x322的交点的直线方程。分析:此题可先求出两个交点再求直线方程,但计算量较大。若从曲线与方程的关系这一角度出发,只要理解了曲线上点的坐标与方程的解之间的关系,利用共交点的曲线系方程解题,可避免大量的计算。二、共交点曲线系方程的灵活性运用从曲线系方程0)y,x(g)y,x(f结构看,若0)y,x(g)y,x(f为圆系方程,不要求f(x,y)=0与g(x,y)=0都是圆的方程,只要其中有一个是圆的方程,它就是圆系方程,因此可延展到直线与圆相交的情形。从运动的角度看:㈠直线也可以看成圆,因为直线可理解为半径趋于正无穷大的圆;㈡点也可以看成圆,因为点可理解为半径为零的圆,即点圆;㈢因为圆系方程可延展到直线与圆相交的情形,因此圆上的切点也可理解为圆的相交直线·2·运动到相切的位置,即视切点为切线。例1:求过直线015y8x4yx04yx222和圆的交点,且经过点Q(5,6)的圆的方程。分析:当圆系方程中C1与C2有一条是直线L时,C1+λL=0仍表示过C1与L交点的圆系方程,L可理解为由圆退化的直线。例2:求与圆015y8x4yx22相切于点P(3,6),且经过点Q(5,6)的圆的方程。分析:由例2可知题设中的直线可理解为由圆退化的直线,所以也把此题中的切点P(3,6)视为由圆退化的点。即点圆:0)6y()3x(22。解法一:切点P(3,6)在已知圆上,将它视为“点圆”:0)6y()3x(22,故建立圆系方程0)6y()3x[(15y8x4yx2222,将点Q(5,6)的坐标代入方程,解得2。故所求的圆的方程是:075y16x8yx22。分析:若利用运动的观点看待此题:点P可看成一条与圆相交的直线运动到与圆有且只有一个公共点的情形,因此切点P(3,6)又可视为退化的切线。解法二:与圆相切于点P(3,6)的切线方程为:015)6y(4)3x(2y6x3即015y2x故可设所求的圆系方程为:0)15y2x(15y8x4yx22,将点Q(5,6)代入得4。故所求圆的方程是075y16x8yx22三、共交点曲线系方程的构造性运用在实际问题的解决中,可不拘泥于曲线系方程0)y,x(g)y,x(f的结构形式,其中f(x,y)与g(x,y)都可由一些代数式经过运算得到,我们注意到两个二元一次代数式相乘的结果为二元二次代数式的情形。例1:已知双曲线4y2x22与直线01yx2,01yx有四个交点,·3·求过此四个交点且过点)0,1(的二次曲线方程。分析:如直接求,则计算量太大,故采用二次曲线系研究,则需将两个二元一次方程合并成一个二次方程,即0SLL21。例2:求与抛物线9x5y:C2相切于点P(0,3),Q)2,1(两点,且过点A)1,2(的圆锥曲线方程。分析:⑴此题若直接设圆锥曲线方程为:0edycxbyaxyx22五个代定系数,从题中找出五个方程可以解出来,但计算量太大。⑵若用共交点的曲线系方程解题,则关键在于如何设出曲线系方程。方法一:(由例3得到启示:可将两切点分别看作两条退化的切线。)解:与抛物线9x5y2相切于点P(0,3)的切线方程为:9)0x(25y3即018y6x5相切于点Q)2,1(的切线方程为:9)1x(25y2即013y4x5。因此可设所求的曲线方程是:0)18y6x5)(13y4x5(9x5y2,因曲线过点A(1,2)代入上式得71。化简整理得所求的圆锥曲线方程是:0297y6x190y31xy10x2522。方法二:(由例4得到启示,求出P、Q两切点所在的直线方程L,则可用运动的观点认为直线L是由两条与抛物线相交的直线运动到重合的情形。)解:过P(0,3)和Q)2,1(两切点的直线方程是03yx5,设所求的曲线方程是0)3yx5(9x5y22。因曲线过点A(1,2)代入上式得321。化简整理所求的圆锥曲线方程是:0297y6x190y31xy10x2522。例3:四条直线L1:015y3x,L1:06ykx,L3:x+5y=0,L4:y=0围成一个四边形,试求出一个k的值,使得四条直线围成的四边形有一个外接圆,·4·并求此外接圆的方程。分析:一、对已知条件进行分析。①四条直线中三条直线已确定,而L2是过定点(0,)6的动直线。②此四边形是由四条直线围成的,所以四条直线必须两两相交,而四条直线两两相交会有六个交点,因此必须从六个交点中选出符合条件的四个交点。二、对图形进行分析①通过对图形的研究发现,围成的四边形有四种类型,但根据圆的内接四边形内对角互补的几何性质,可排除两种,由于题目只要求求出一个k值,因此可根据图形,找一种情形进行求解。②通过观察可知,所求的外接圆方程,必须过直线L1与直线L2的交点A,直线L2与直线L3的交点B,直线L3与直线L4的交点O,直线L1与直线L4的交点C。利用共交点的曲线系方程求解有关圆锥曲线方程的问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料。BAL2L1L4L3OCyx515-6