数学1(必修)第二章基本初等函数(1)[基础训练A组]一、选择题1.下列函数与xy有相同图象的一个函数是()A.2xyB.xxy2C.)10(logaaayxa且D.xaaylog2.下列函数中是奇函数的有几个()①11xxaya②2lg(1)33xyx③xyx④1log1axyxA.1B.2C.3D.43.函数yx3与yx3的图象关于下列那种图形对称()A.x轴B.y轴C.直线yxD.原点中心对称4.已知13xx,则3322xx值为()A.33B.25C.45D.455.函数12log(32)yx的定义域是()A.[1,)B.2(,)3C.2[,1]3D.2(,1]36.三个数60.70.70.76log6,,的大小关系为()A.60.70.70.7log66B.60.70.70.76log6C.0.760.7log660.7D.60.70.7log60.767.若fxx(ln)34,则fx()的表达式为()A.3lnxB.3ln4xC.3xeD.34xe二、填空题1.985316,8,4,2,2从小到大的排列顺序是。2.化简11410104848的值等于__________。3.计算:(log)loglog2222545415=。4.已知xyxy224250,则log()xxy的值是_____________。5.方程33131xx的解是_____________。6.函数1218xy的定义域是______;值域是______.7.判断函数22lg(1)yxxx的奇偶性。三、解答题1.已知),0(56aax求xxxxaaaa33的值。2.计算100011343460022lg.lglglglg.的值。3.已知函数211()log1xfxxx,求函数的定义域,并讨论它的奇偶性单调性。4.(1)求函数21()log32xfxx的定义域。(2)求函数)5,0[,)31(42xyxx的值域。数学1(必修)第二章基本初等函数(1)[综合训练B组]一、选择题1.若函数)10(log)(axxfa在区间]2,[aa上的最大值是最小值的3倍,则a的值为()A.42B.22C.41D.212.若函数)1,0)((logaabxya的图象过两点(1,0)和(0,1),则()A.2,2abB.2,2abC.2,1abD.2,2ab3.已知xxf26log)(,那么)8(f等于()A.34B.8C.18D.214.函数lgyx()A.是偶函数,在区间(,0)上单调递增B.是偶函数,在区间(,0)上单调递减C.是奇函数,在区间(0,)上单调递增D.是奇函数,在区间(0,)上单调递减5.已知函数)(.)(.11lg)(afbafxxxf则若()A.bB.bC.b1D.1b6.函数()log1afxx在(0,1)上递减,那么()fx在(1,)上()A.递增且无最大值B.递减且无最小值C.递增且有最大值D.递减且有最小值二、填空题1.若axfxxlg22)(是奇函数,则实数a=_________。2.函数212()log25fxxx的值域是__________.3.已知1414log7,log5,ab则用,ab表示35log28。4.设1,,lgAyxy,0,,Bxy,且AB,则x;y。5.计算:5log22323。6.函数xxe1e1y的值域是__________.三、解答题1.比较下列各组数值的大小:(1)3.37.1和1.28.0;(2)7.03.3和8.04.3;(3)25log,27log,23982.解方程:(1)192327xx(2)649xxx3.已知,3234xxy当其值域为[1,7]时,求x的取值范围。4.已知函数()log()xafxaa(1)a,求()fx的定义域和值域;数学1(必修)第二章基本初等函数(1)[提高训练C组]一、选择题1.函数]1,0[)1(log)(在xaxfax上的最大值和最小值之和为a,则a的值为()A.41B.21C.2D.42.已知log(2)ayax在[0,1]上是x的减函数,则a的取值范围是()A.(0,1)B.(1,2)C.(0,2)D.[2,+)3.对于10a,给出下列四个不等式①)11(log)1(logaaaa②)11(log)1(logaaaa③aaaa111④aaaa111其中成立的是()A.①与③B.①与④C.②与③D.②与④4.设函数1()()lg1fxfxx,则(10)f的值为()A.1B.1C.10D.1015.定义在R上的任意函数()fx都可以表示成一个奇函数()gx与一个偶函数()hx之和,如果()lg(101),xfxxR,那么()A.()gxx,()lg(10101)xxhxB.lg(101)()2xxgx,xlg(101)()2xhxC.()2xgx,()lg(101)2xxhxD.()2xgx,lg(101)()2xxhx6.若ln2ln3ln5,,235abc,则()A.abcB.cbaC.cabD.bac二、填空题1.若函数12log22xaxy的定义域为R,则a的范围为__________。2.若函数12log22xaxy的值域为R,则a的范围为__________。3.函数11()2xy的定义域是______;值域是______.4.若函数()11xmfxa是奇函数,则m为__________。5.求值:22log3321272log2lg(3535)8__________。三、解答题1.解方程:(1)40.2540.25log(3)log(3)log(1)log(21)xxxx(2)2(lg)lg1020xxx2.求函数11()()142xxy在3,2x上的值域。3.已知()1log3xfx,()2log2xgx,试比较()fx与()gx的大小。4.已知110212xfxxx,⑴判断fx的奇偶性;⑵证明0fx.(数学1必修)第二章基本初等函数(1)[基础训练A组]一、选择题1.D2yxx,对应法则不同;2,(0)xyxxlog,(0)axyaxx;log()xayaxxR2.D对于111,()()111xxxxxxaaayfxfxaaa,为奇函数;对于22lg(1)lg(1)33xxyxx,显然为奇函数;xyx显然也为奇函数;对于1log1axyx,11()loglog()11aaxxfxfxxx,为奇函数;3.D由yx3得3,(,)(,)xyxyxy,即关于原点对称;4.B1111122222()23,5xxxxxx331112222()(1)25xxxxxx5.D11222log(32)0log1,0321,13xxx6.D600.700.70.70.766log60=1,=1,当,ab范围一致时,log0ab;当,ab范围不一致时,log0ab注意比较的方法,先和0比较,再和1比较7.D由ln(ln)3434xfxxe得()34xfxe二、填空题1.35892841621234135893589222,22,42,82,162,而13241385922.1610103020201084111222121084222(12)21684222(12)3.2原式12222log52log5log52log524.022(2)(1)0,21xyxy且,22log()log(1)0xxy5.133333,113xxxxxx6.1|,|0,2xxyy且y11210,2xx;12180,1xyy且7.奇函数2222()lg(1)lg(1)()fxxxxxxxfx三、解答题1.解:65,65,26xxxxaaaa222()222xxxxaaaa3322()(1)23xxxxxxxxxxaaaaaaaaaa2.解:原式13lg32lg30022lg3lg3263.解:0x且101xx,11x且0x,即定义域为(1,0)(0,1);221111()loglog()11xxfxfxxxxx为奇函数;212()log(1)11fxxx在(1,0)(0,1)和上为减函数。4.解:(1)2102211,,13320xxxxx且,即定义域为2(,1)(1,)3;(2)令24,[0,5)uxxx,则45u,5411()(),33y181243y,即值域为1(,81]243。(数学1必修)第二章基本初等函数(1)[综合训练B组]一、选择题1.A1323112log3log(2),log(2),2,8,,384aaaaaaaaaaaa2.Alog(1)0,ab且log1,2abab3.D令1666228(0),82,(8)()loglog2xxxffxx4.B令()lg,()lglg()fxxfxxxfx,即为偶函数令,0uxx时,u是x的减函数,即lgyx在区间(,0)上单调递减5.B11()lglg().()().11xxfxfxfafabxx则6.A令1ux,(0,1)是u的递减区间,即1a,(1,)是u的递增区间,即()fx递增且无最大值。二、填空题1.110()()22lg22lgxxxxfxfxaa1(lg1)(22)0,lg10,10xxaaa(另法):xR,由()()fxfx得(0)0f,即1lg10,10aa2.,22225(1)44,xxx而101,221122log25log42xx3.2aab141414143514log28log7log5log35,log28log35ab1414141414141414141loglog(214)1log21(1log7)27log35log35log35log35aab4.1,1∵0,0,Ay∴lg()0,1xyxy又∵1,1,By∴1,1xx而,∴1,1xy且5.1532323212log5log5log5132323256.(1,1)xxe1e1y,10,111xyeyy三、解答题1.解:(1)∵3.301.71.71,2.100.80.81,∴3.31.71.28.0(2)∵0.70.80.80.83.33.3,3.33.4,∴0.73.38.04.3(3)8293log27log3,log25log5,332222233333log2log22log3,log3log33log5,22∴983log25log27.22.解:(1)2(3)63270,(33)(39)0,