怎样求数列的通项公式•复习等差数列和等比数列的通项公式:②.等比数列的通项公式:等比数列的通项公式:an=a1qn–1.①.等差数列的通项公式:等差数列的通项公式:an=a1+(n–1)d.•1.观察法:•有些数列,通过观察各项的变化规律,就可以写出通项公式.•例1写出下列各数列的一个通项公式:•(1)-1,4,-9,16,-25,36,···;;,,,,,)(3271658341213(2)2,3,5,9,17,33,···;解:an=(-1)n·n2.解:an=2n-1+1..nnna223解:;,,,,,)(30292019121165214.)()(111nnnnan解:2.累加法:.).,,,()(,}{公式求数列的通项且中,若在数列例32111211nnnaaaaannn.)(111111kkkkaakk解:由递推式得令k=1,2,3,···,n–1,得,,,413131212111342312aaaaaa.nnaann1111以上诸式左右两边分别相加,得.,)(naannaann112111若an+1=an+f(n),则:an=a1+(ak-ak-1)=a1+f(k-1)=a1+f(k).n-1k=1nk=2nk=2注:这种方法实质上是利用了公式an-a1=(a2-a1)+(a3-a2)+(a4-a3)+···+(an-an-1)因而称为逐差法.若an+1=f(n)an,则:an=a1…=a1f(1)f(2)…f(n-1)(n≥2).anan-1a2a1a3a23、叠乘法•4.公式法•利用数列前n项和Sn求通项公式:an=S1(n=1),Sn-Sn-1(n≥2).例3.数列{an}的前n项和Sn=n2-7n-8,(1)求{an}的通项公式;(2)求{|an|}的前n项和Tn.解:(1)当n=1时,a1=S1=-14;当n≥2时,an=Sn-Sn-1=2n-8,(2)由(1)知,当n≤4时,an≤0;当n≥5时,an0;当n≥5时,Tn=-S4+Sn-S4=Sn-2S4故an=2n-8,n≥2.-14,n=1,=n2-7n-8-2(-20)∴当n≤4时,Tn=-Sn=-n2+7n+8,=n2-7n+32.故Tn=n2-7n+32,n≥5.-n2+7n+8,n≤4,•例4求下列数列的通项公式:•(1)2,22,222,2222,···(逐项依次多数字2)•(2)0.23,0.2323,0.232323,···(逐项依次多数字23).位个)解:(nnna0200200202222212.),()()(1021109210110121qannn项和,这是等比数列的前(2)解法同上,此小题留给同学们完成,其答案为:.)(nna2101199234、化归(构造)法通过恰当的恒等变形,如配方、因式分解、取倒数等,转化为等比数列或等差数列.(1)若an+1=pan+q,则:an+1-=p(an-).(3)若an+1=pan+q(n),则:(2)若an+1=,则:panr+qanan+11an1=·+.prpqan+1pn+1anpn=+.q(n)pn+1例5.已知数列{an}中,a1=1,an+1=an+1(nN*),求an.12解法一∵an+1=an+1(nN*),12∴an=an-1+1,an-1=an-2+1.1212两式相减得:an-an-1=(an-1-an-2)12∴{an-an-1}是以a2-a1=为首项,公比为的等比数列.1212∴an-an-1=()n-2=()n-1.121212∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1++()2+…+()n-1121212=2-21-n.即an=2-21-n.解法二由解法一知an-an-1=21-n,又an=an-1+1,12消去an-1得an=2-21-n.解法三∵an=an-1+1,12令an+=(an-1+),12则=-2.∴an-2=(an-1-2).12∴{an-2}是以a1-2=-1为首项,公比为的等比数列.1212∴an-2=-()n-1.即an=2-21-n.3.已知数列{an}中,a1=1,an+1=an+1(nN*),求an.12•借助于等差、等比数列求通项公式:例6设数列{an}的前n项和Sn与an的关系是,Sn=kan+1(其中k是与n无关的实数,且k0,k1),求这个数列通项公式.解:an+1=Sn+1–Sn=(kan+1+1)-(kan+1)an+1=kan+1-kan.,nnakkak111由题设,S1=ka1+1,即a1=ka1+1(S1=a1),.ka111a10且an0(注意k0)..11kkaann所以数列{an}为等比数列..)(nnnnkkkkka111111例7.在数列{an}中,a1=1,Sn=(n≥2),求an.Sn-12Sn-1+1Sn-12Sn-1+1解:由Sn=知:1Sn1Sn-1-=2.1Sn∴{}是以==1为首项,公差为2的等差数列.1S11a11Sn∴=1+2(n-1)=2n-1.∴Sn=.2n-11∵a1=1,当n≥2时,an=Sn-Sn-1=-.(2n-1)(2n-3)2∴an=-,n≥2.1,n=1,(2n-1)(2n-3)2例8在数列{an}中,a1=1,且nan+1=(n+1)an+2n(n+1)(n=1,2,3,),求数列的通项公式.),,,(321211nnanann解:由题设条件,得.,21nnnnbbbna则令.,}{21111公差为为等差数列,首项abbnbn=1+2(n–1)=2n-1..12nnan数列的通项公式为an=n(2n–1).•5.归纳法(只作介绍即可):.*)(11}{911,求数列的通项公式,且中,若在数列例Nnaaaaannnn.21111111121aaaa,解:由题设条件,得,31211211223aaa,41311311334aaa,51411411445aaa.nan1可以猜想•注意:归纳法只能在选择题、填空题中使用,解答题中必须对结论证明先计算数列的前若干项,通过观察规律,猜想通项公式,进而用数学归纳法证之.