1奎屯王新敞新疆在应用条件A∪B=BA∩B=AAB时,易忽略A是空集Φ的情况奎屯王新敞新疆2奎屯王新敞新疆求解与函数有关的问题易忽略定义域优先的原则奎屯王新敞新疆3奎屯王新敞新疆判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称奎屯王新敞新疆4奎屯王新敞新疆求反函数时,易忽略求反函数的定义域奎屯王新敞新疆5奎屯王新敞新疆函数与其反函数之间的一个有用的结论:1()()fbafab6奎屯王新敞新疆原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数1()yfx也单调递增;但一个函数存在反函数,此函数不一定单调奎屯王新敞新疆例如:1yx奎屯王新敞新疆7奎屯王新敞新疆根据定义证明函数的单调性时,规范格式是什么?(取值,作差,判正负奎屯王新敞新疆)8奎屯王新敞新疆求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示奎屯王新敞新疆9奎屯王新敞新疆用均值定理求最值(或值域)时,易忽略验证“一正二定三等”这一条件奎屯王新敞新疆10奎屯王新敞新疆你知道函数(0,0)byaxabx的单调区间吗?(该函数在(,],)bbaa和[或上单调递增;在[,0)]bbaa和(0,上单调递减)这可是一个应用广泛的函数!(其在第一象限的图像就象“√”,特命名为:对勾函数)11奎屯王新敞新疆解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀奎屯王新敞新疆12奎屯王新敞新疆用换元法解题时,易忽略换元前后的等价性奎屯王新敞新疆13奎屯王新敞新疆用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0奎屯王新敞新疆尤其是直线与圆锥曲线相交时更易忽略奎屯王新敞新疆14奎屯王新敞新疆等差数列中的重要性质:若m+n=p+q,则mnpqaaaa;(反之不成立)等比数列中的重要性质:若m+n=p+q,则mnpqaaaa奎屯王新敞新疆(反之不成立)15奎屯王新敞新疆用等比数列求和公式求和时,易忽略公比q=1的情况奎屯王新敞新疆16奎屯王新敞新疆已知nS求na时,易忽略n=1的情况奎屯王新敞新疆17奎屯王新敞新疆等差数列的一个性质:设nS是数列{na}的前n项和,{na}为等差数列的充要条件是:2nSanbn(a,b为常数)其公差是2a奎屯王新敞新疆18奎屯王新敞新疆你知道怎样的数列求和时要用“错位相减”法吗?(若nnncab其中{na}是等差数列,{nb}是等比数列,求{nc}的前n项的和)19奎屯王新敞新疆你还记得裂项求和吗?(如111(1)1nnnn)20奎屯王新敞新疆在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?21奎屯王新敞新疆你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角奎屯王新敞新疆异角化同角,异名化同名,高次化低次)22奎屯王新敞新疆你还记得在弧度制下弧长公式和扇形面积公式吗?1(||,2lrSlr扇形)23奎屯王新敞新疆在三角中,你知道1等于什么吗?2222(1sincossectantancottansincos042这些统称为1的代换)常数“1”的种种代换有着广泛的应用奎屯王新敞新疆24奎屯王新敞新疆反正弦、反余弦、反正切函数的取值范围分别是[,],[0,],(,)222225奎屯王新敞新疆0与实数0有区别,0的模为数0,它不是没有方向,而是方向不定奎屯王新敞新疆0可以看成与任意向量平行,但与任意向量都不垂直奎屯王新敞新疆26奎屯王新敞新疆0a,则0ab,但0ab不能得到0a或0b奎屯王新敞新疆ab有0ab奎屯王新敞新疆27奎屯王新敞新疆ab时,有acbc奎屯王新敞新疆反之acbc不能推出ab28奎屯王新敞新疆一般地()()abcabc奎屯王新敞新疆29奎屯王新敞新疆在ABC中,sinsinABAB30奎屯王新敞新疆使用正弦定理时易忘比值还等于2R奎屯王新敞新疆::sin:sin:sinabcABC31奎屯王新敞新疆在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示奎屯王新敞新疆32奎屯王新敞新疆两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>o11ab,a<b<o11ab奎屯王新敞新疆33奎屯王新敞新疆分式不等式的一般解题思路是什么?(移项通分、零点分段)34奎屯王新敞新疆解指对不等式应该注意什么问题?(指数函数与对数函数的单调性,对数的真数大于零奎屯王新敞新疆)35奎屯王新敞新疆在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底或)讨论完之后,要写出:综上所述,原不等式的解是……奎屯王新敞新疆36奎屯王新敞新疆常用放缩技巧:211111111(1)(1)1nnnnnnnnnkkkkkkkkk1112111137奎屯王新敞新疆解析几何的主要思想:用代数的方法研究图形的性质奎屯王新敞新疆主要方法:坐标法奎屯王新敞新疆38奎屯王新敞新疆用直线的点斜式、斜截式设直线的方程时,易忽略斜率不存在的情况奎屯王新敞新疆39奎屯王新敞新疆用到角公式时,易将直线12,ll的斜率12,kk的顺序弄颠倒奎屯王新敞新疆40奎屯王新敞新疆直线的倾斜角、到的角、与的夹角的取值范围依次是[0,),(0,),(0,]2奎屯王新敞新疆41奎屯王新敞新疆函数的图象的平移、方程的平移以及点的平移公式易混:33sinsin()3xxxyxyx沿轴向右平移①22sin2sin,sin2yyyyxyxyx沿轴向上平移②即212sinsin2xxxyxyx沿轴缩短到原来的③1221sinsin2xxxyxyx沿轴伸长到原来的倍④2121sin2sin,sin2yyyyxyxyx沿轴缩短到原来的⑤即1221sinsin,2sin2yyyyxyxyx沿轴伸长到原来的倍⑥即⑦点的平移公式:点P(x,y)按向量a=(h,k)平移到点P/(x/,y/),则x/=x+h,y/=y+k奎屯王新敞新疆42奎屯王新敞新疆定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清)43奎屯王新敞新疆对不重合的两条直线,,有;奎屯王新敞新疆(在解题时,讨论k后利用斜率k和截距b)44奎屯王新敞新疆直线在坐标轴上的截距可正,可负,也可为0奎屯王新敞新疆45奎屯王新敞新疆处理直线与圆的位置关系有两种方法:(1)点到直线的距离;(2)直线方程与圆的方程联立,判别式奎屯王新敞新疆一般来说,前者更简捷奎屯王新敞新疆46奎屯王新敞新疆处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系奎屯王新敞新疆47奎屯王新敞新疆在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形奎屯王新敞新疆48奎屯王新敞新疆还记得圆锥曲线的两种定义吗?解有关题是否会联想到这两个定义?49奎屯王新敞新疆还记得圆锥曲线方程中的a,b,c,p,caac2,,2bc,2ba的意义吗?50奎屯王新敞新疆在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序?51奎屯王新敞新疆离心率的大小与曲线的形状有何关系?(圆扁程度,张口大小)等轴双曲线的离心率是多少?52奎屯王新敞新疆在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制奎屯王新敞新疆(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)奎屯王新敞新疆53奎屯王新敞新疆椭圆中,注意焦点、中心、短轴端点所组成的直角三角形(a,b,c)54奎屯王新敞新疆通径是抛物线的所有焦点弦中最短的弦奎屯王新敞新疆(想一想在双曲线中的结论?)55奎屯王新敞新疆你知道椭圆、双曲线标准方程中a,b,c之间关系的差异吗?56奎屯王新敞新疆如果直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,只有一个交点奎屯王新敞新疆此时两个方程联立,消元后为一次方程奎屯王新敞新疆57奎屯王新敞新疆经纬度定义易混奎屯王新敞新疆经度为二面角,纬度为线面角奎屯王新敞新疆58奎屯王新敞新疆求两条异面直线所成的角、直线与平面所成的角二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法奎屯王新敞新疆59奎屯王新敞新疆线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大奎屯王新敞新疆60奎屯王新敞新疆作出二面角的平面角主要方法是什么?(定义法、三垂线法、垂面法)三垂线法:一定平面,二作垂线,三作斜线,射影可见奎屯王新敞新疆61奎屯王新敞新疆求点到面的距离的常规方法是什么?(直接法、等体积法、换点法、向量法)62奎屯王新敞新疆求多面体体积的常规方法是什么?(割补法、等积变换法)63奎屯王新敞新疆两条异面直线所成的角的范围:0°α≤90°直线与平面所成的角的范围:0o≤α≤90°二面角的平面角的取值范围:0°≤α≤180°64奎屯王新敞新疆二项式()nab展开式的通项公式中a与b的顺序不变奎屯王新敞新疆65奎屯王新敞新疆二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为rnC奎屯王新敞新疆66奎屯王新敞新疆二项式系数最大项与展开式中系数最大项易混奎屯王新敞新疆二项式系数最大项为中间一项或两项;展开式中系数最大项的求法为用解不等式组112rrrrTTTT来确定r奎屯王新敞新疆67奎屯王新敞新疆解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合奎屯王新敞新疆68奎屯王新敞新疆解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法或看为若干个恰好奎屯王新敞新疆69奎屯王新敞新疆二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率与二项分布的分布列三者易记混奎屯王新敞新疆通项公式:1rnrrrnTCab(它是第r+1项而不是第r项)奎屯王新敞新疆事件A发生k次的概率:()(1)kknknnPkCpp奎屯王新敞新疆其中k=0,1,2,3,…,n,且0p1,p+q=1奎屯王新敞新疆70奎屯王新敞新疆常见函数的导数公式:0'C;1)'(nnnxx;xxcos)'(sin;xxsin)'(cos奎屯王新敞新疆xx1)'(ln奎屯王新敞新疆exxaalog1)'(log奎屯王新敞新疆xxee)'(奎屯王新敞新疆aaaxxln)'(奎屯王新敞新疆2();uuvuvuvuvuvvv,(())uxfuxfu