§08.圆锥曲线方程知识要点一、椭圆方程.1.椭圆方程的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2FFFFaPFPFFFaPFPFFFaPFPF⑴①椭圆的标准方程:i.中心在原点,焦点在x轴上:)0(12222babyax.ii.中心在原点,焦点在y轴上:)0(12222babxay.②一般方程:)0,0(122BAByAx.③椭圆的标准参数方程:12222byax的参数方程为sincosbyax(一象限应是属于20).⑵①顶点:),0)(0,(ba或)0,)(,0(ba.②轴:对称轴:x轴,y轴;长轴长a2,短轴长b2.③焦点:)0,)(0,(cc或),0)(,0(cc.④焦距:2221,2baccFF.⑤准线:cax2或cay2.⑥离心率:)10(eace.⑦焦点半径:i.设),(00yxP为椭圆)0(12222babyax上的一点,21,FF为左、右焦点,则由椭圆方程的第二定义可以推出.ii.设),(00yxP为椭圆)0(12222baaybx上的一点,21,FF为上、下焦点,则由椭圆方程的第二定义可以推出.由椭圆第二定义可知:)0()(),0()(0002200201xaexxcaepFxexacaxepF归结起来为“左加右减”.注意:椭圆参数方程的推导:得)sin,cos(baN方程的轨迹为椭圆.⑧通径:垂直于x轴且过焦点的弦叫做通经.坐标:),(2222abcabd和),(2abc⑶共离心率的椭圆系的方程:椭圆)0(12222babyax的离心率是)(22bacace,方程ttbyax(2222是大于0的参数,)0ba的离心率也是ace我们称此方程为共离心率的椭圆系方程.⑸若P是椭圆:12222byax上的点.21,FF为焦点,若21PFF,则21FPF的面积为2tan2b(用余弦定理与aPFPF221可得).若是双曲线,则面积为2cot2b.二、双曲线方程.1.双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222FFFFaPFPFFFaPFPFFFaPFPF⑴①双曲线标准方程:)0,(1),0,(122222222babxaybabyax.一般方程:)0(122ACCyAx.⑵①i.焦点在x轴上:顶点:)0,(),0,(aa焦点:)0,(),0,(cc准线方程cax2渐近线方程:0byax或02222byaxii.焦点在y轴上:顶点:),0(),,0(aa.焦点:),0(),,0(cc.准线方程:cay2.渐近线方程:0bxay或02222bxay,0201,exaPFexaPF0201,eyaPFeyaPF▲asinacos,()bsinbcos(),NyxN的轨迹是椭圆参数方程:tansecbyax或sectanaybx.②轴yx,为对称轴,实轴长为2a,虚轴长为2b,焦距2c.③离心率ace.④准线距ca22(两准线的距离);通径ab22.⑤参数关系acebac,222.⑥焦点半径公式:对于双曲线方程12222byax(21,FF分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:aexMFaexMF0201构成满足aMFMF221aexFMaexFM0201(椭圆焦半径要带符号计算,而双曲线不带符号)aeyFMaeyFMaeyMFaeyMF02010201⑶等轴双曲线:双曲线222ayx称为等轴双曲线,其渐近线方程为xy,离心率2e.⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.2222byax与2222byax互为共轭双曲线,它们具有共同的渐近线:02222byax.⑸共渐近线的双曲线系方程:)0(2222byax的渐近线方程为02222byax如果双曲线的渐近线为0byax时,它的双曲线方程可设为)0(2222byax.例如:若双曲线一条渐近线为xy21且过)21,3(p,求双曲线的方程?解:令双曲线的方程为:)0(422yx,代入)21,3(得12822yx.⑹直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“法与渐近线求交和两根之和与两根之积同号.⑺若P在双曲线12222byax,则常用结论1:P到焦点的距离为m=n,则P到两准线的距离比为m︰n.简证:ePFePFdd2121=nm.常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.三、抛物线方程.3.设0p,抛物线的标准方程、类型及其几何性质:▲yxM'MF1F2▲yxM'MF1F2▲yxF1F21234533pxy22pxy22pyx22pyx22图形▲yxO▲yxO▲yxO▲yxO焦点)0,2(pF)0,2(pF)2,0(pF)2,0(pF准线2px2px2py2py范围Ryx,0Ryx,00,yRx0,yRx对称轴x轴y轴顶点(0,0)离心率1e焦点12xpPF12xpPF12ypPF12ypPF注:①xcbyay2顶点)244(2ababac.③通径为2p,这是过焦点的所有弦中最短的.②)0(22ppxy则焦点半径2PxPF;)0(22ppyx则焦点半径为2PyPF.④pxy22(或pyx22)的参数方程为ptyptx222(或222ptyptx)(t为参数).四、圆锥曲线的统一定义..4.圆锥曲线的统一定义:平面内到定点F和定直线l的距离之比为常数e的点的轨迹.当10e时,轨迹为椭圆;当1e时,轨迹为抛物线;当1e时,轨迹为双曲线;当0e时,轨迹为圆(ace,当bac,0时).5.圆锥曲线方程具有对称性.例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD,即证AD与BC的中点重合即可.注:椭圆、双曲线、抛物线的标准方程与几何性质椭圆双曲线抛物线定义1.到两定点F1,F2的距离之和为定值2a(2a|F1F2|)的点的轨迹1.到两定点F1,F2的距离之差的绝对值为定值2a(02a|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(0e1)2.与定点和直线的距离之比为定值e的点的轨迹.(e1)与定点和直线的距离相等的点的轨迹.图形方程标准方程12222byax(ba0)12222byax(a0,b0)y2=2px参数方程为离心角)参数(sincosbyax为离心角)参数(tansecbyaxptyptx222(t为参数)范围─axa,─byb|x|a,yRx0中心原点O(0,0)原点O(0,0)顶点(a,0),(─a,0),(0,b),(0,─b)(a,0),(─a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a,虚轴长2b.x轴焦点F1(c,0),F2(─c,0)F1(c,0),F2(─c,0))0,2(pF焦距2c(c=22ba)2c(c=22ba)离心率)10(eace)1(eacee=1准线x=ca2x=ca22px渐近线y=±abx焦半径exar)(aexr2pxr通径ab22ab222p焦参数ca2ca2P1.椭圆、双曲线、抛物线的标准方程的其他形式及相应性质.2.等轴双曲线3.共轭双曲线5.方程y2=ax与x2=ay的焦点坐标及准线方程.6.共渐近线的双曲线系方程.