3[1].3.2简单的线性规划问题(1).ppt1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

3.3.2简单的线性规划问题(1)xyo在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。1、下面我们就来看有关与生产安排的一个问题:1.课题导入某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有可能的日生产安排是什么?按甲、乙两种产品分别生产x、y件,由已知条件可得二元一次不等式组0034820y0x124y164x82yyxyxyxx+将上述不等式组表示成平面上的区域,图中的阴影部分中的整点(坐标为整数)就代表所有可能的日生产安排。yx4843o提出新问题:若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用那种生产安排利润最大?把z=2x+3y变形为它表示斜率为的直线系,z与这条直线的截距有关。332zxy32M设工厂获得的利润为z,则z=2x+3y把z=2x+3y变形为它表示斜率为的直线系,z与这条直线的截距有关。由上图可以看出,当实现直线x=4与直线x+2y-8=0的交点M(4,2)时,截距的值最大,最大值为,这时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元。32332zxy3z143二、基本概念yx4843o把求最大值或求最小值的的函数称为目标函数,因为它是关于变量x、y的一次解析式,又称线性目标函数。满足线性约束的解(x,y)叫做可行解。在线性约束条件下求线性目标函数的最大值或最小值问题,统称为线性规划问题。一组关于变量x、y的一次不等式,称为线性约束条件。由所有可行解组成的集合叫做可行域。使目标函数取得最大值或最小值的可行解叫做这个问题的最优解。可行域可行解最优解三、练习题:1、求z=2x+y的最大值,使x、y满足约束条件:11-+yyxxy2、求z=3x+5y的最大值,使x、y满足约束条件:35x11535yxyyx-++1.解:作出平面区域xyABCo11-+yyxxyz=2x+y作出直线y=-2x+z的图像,可知z要求最大值,即直线经过C点时。求得C点坐标为(2,-1),则Zmax=2x+y=32.解:作出平面区域xyoABC35x11535yxyyx-++z=3x+5y作出直线3x+5y=z的图像,可知直线经过A点时,Z取最大值;直线经过B点时,Z取最小值。求得A(1.5,2.5),B(-2,-1),则Zmax=17,Zmin=-11。四.课时小结用图解法解决简单的线性规划问题的基本步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功