12015深圳市第6届“启智杯”数学思维竞赛题(A1中年级组)1.在下式括号中填上合适的数,使得等式满足下列三个条件:(1)等式成立;(2)各分数值小于1;(3)所有分数的分母不相等.()2()4()330()12()10()2.下列图形从左往右的排列中,直角个数变化是有规律的,请你写出这个变化规律,并在问号处填上选择符合的图形对应的字母.3.下面左右两幅方格图中,每个方格中都有49个交点.(1)观察左图,发现点C到A、B的距离相,那么这副图中剩下的46个交点中,到A、B距离相等的公共交点还有哪些?请在图中描出.(2)在右图中A、B两点确定了一个距离,试在图中剩下的48个交点中描出所有可能的点,使得这些点到B点的距离等于A、B两点的距离.4.将1,2,3,4,5,6,7,8,9这9个数分别填在如图所示的各个圆圈中,使每条线段上的三个圆圈内的数之和相等,把满足条件的可能填发全部列出.25.期末考试,在语数英三门课程中,聪聪有一门得了满分,她的同学甲、乙、丙在猜测到底哪一门得了满分.甲认为不是语文,乙认为是数学或英语,丙认为是英语.实际上,这三个同学的看法至少有一种是正确的,也至少有一种是错误的.请问,聪聪到底是哪门课考了满分?说明你的答案与推理过程.6.已知111124578201420151236723692016ab,.求ab的值,写出计算过程.7.下图左边是一个44的正方形去掉六个11的小正方形后剩下的“十字”形图形,右边的六个图形也是有11的小正方形拼成的图形,这些图形中,选择两块可以在平面上移动(可转动,但不翻动)拼成左边“十字”形图形,请把所有可能选出两块的拼法画在“十字”形图形上,并标出拼图组件所对应的字母.38.一个数各个位置上的数字加起来的和叫做数字和,如123的数字和是1+2+3=6.如果一个数的数字和不是一位数,就将其数字和再求数字和.如:456,4+5+8=17,1+7=8,如果最后得到的结果是1,则称这个数为“孤独数”.请问从1到2015的自然数中“孤独数”有多少个?写出结果及推理的过程.9.甲、乙、丙三人在A、B两块相邻的地植树,A地要植400棵,B地要植600棵.已知甲、乙、丙每天分别能植树30,34,38棵.甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.三个人在两块地上的植树活动要求同一天开始同一天结束,乙应在开始后第几天从A地转到B地?A、B两地哪一块最先结束植树活动?写出答案及分析过程.10.右边乘法算式中,只有四个位置上的数已知,它们分别是2,0,1,5,请你在空白位置填上数字,使得算式能够成立,写出所有可能成立的算式.411.如下图,在正方形ABCD的四个顶点A、B、C、D上按照顺时针方向依次进行如下标注:首先在顶点A、B上分别标注数1、2,之后将AB两点的标注数之和(1+2=3)标注在下一个顶点C处,再将BC两点的标注数之和(2+3=5)标注在下一个顶点D处.接下来再把A点的标注数1擦去,将CD两点的标注数之和(3+5=8)标注在A点,如此下去,请问:对A点进行第2015次标注的数被3除的余数是多少?说明你的依据.12.某电脑动态屏保是这样设计的:开始共有2015只小鸟,随机编成若干列,每列数量不限.从第一列开始,每两列一组依次连续从屏幕左侧进入屏幕,移动至右侧从屏幕消失.如果消失的两列数量不同,就从后面增补一列小鸟(2015只小鸟以外),其数量为前面消失两列的数量之差(多的减少);如果消失的两列数量相同,则直接消失不予增补.如此下去,小鸟数量和列数都会越来越少,如果最后完全消失,则屏保结束;如果最后剩下1列,则电脑再随机增补100只新的小鸟,依然随机编排,并依前述规则进入和退出屏幕.问:如此下去,这个屏保会否在某个时刻结束?说明你的理由.52015深圳市第6届“启智杯”数学思维竞赛题(A2高年级组)1.规定:符号“▼”为选择两个数中较大的数的运算,符号“▲”为选择两个数中较小的数的运算.比如5▼3=5,7▼10=10,3▲7=3.计算:13.141320154214201570.33?31.234▲▼▼▲▼▲2.一列数,其前七项依次为1,1,3,4,5,9,7,第8项是什么?说明理由.3.如图所示,圆周上的两个点1A、2A将圆等分成2份,在这两个点处写上14;圆周上的两个点3A、4A再将两段半圆弧等分,在点3A、4A处分别写上相邻2个数之和;如此继续这样操作,问能否出现圆周上所有数字之和2015?若可能,请求出经过了多少次操作?若不能,请说明理由.4.右图是四朵对称的小黄花相互连接于一个边长为4的正方形内,如果四朵黄花所围出的中间白色区域的面积为1.2,问一朵黄花的平面面积是多少?说明理由.(注:黑白印刷下,每一朵黄花是指图中虚线所包围的部分,包括其中的小圆内)65.如图,在正五边形ABCDE的五个顶点A、B、C、D、E上按顺时针方向依次进行如下标注:首先在顶点A、B上分别标注1、2,之后将A、B两点的标注数之和123标注在下一个顶点C处,再将B、C两点的标注数这和235标注在下一个顶点D处.再将C、D两点的标注数之和358标注在下一个顶点E处.接下来再把A点的标注数1擦去.将D、E两点的标注数之和5813标注在A点,如此下去,请问:对A点进行第2015次标注的数被5除的余数是多少?说明你的依据.6.某边远山区发生一起谋杀案,警方抓捕了三个嫌疑人A、B、C.法官问A是否杀了人,但A呜哩哇讲了一通方言,法官听不懂,就问另两位能讲普通话的嫌疑人B和C,他们懂这种方言.B说:“A告诉你,他没有杀人”.C说:“不对,A承认是他杀了人”.法官相信,在询问过程中,非罪犯是不会撒谎的,撒谎的一定是罪犯.请问:到底谁是罪犯?请说明理由.7.在一个孤岛上生活着三种怪物:奇虎、奇狮、奇豹,数量分别为2010、2015、2020个.这些怪物有一种古怪的习性:它们任何两种怪物一旦见面,就双方都变成第三种怪物(比如,一个奇虎和一个奇狮见面,就都变成奇豹),见一种怪物见面则不会产生变化.问,如此下去,它们是否有可能到某种时刻全部变成同一种怪物?请说明理由.78.在平面上用长度为5cm的火柴棒摆正方形,摆出1个边长为5cm的正方形需要4根火柴,摆出2015个这样的正方形最少需要多少根火柴?说明你的摆法(不必画图).9.有一个魔术是这样表演的:表演者将一副扑克牌去掉大小鬼共52张放入一暗箱,另有足够多的备用扑克牌.请一位观众上台,让他们从暗箱中随意取出若干张牌,算出这些牌的点数之和的个位数(规定J、Q、K的点数分别为11、12、13),然后从备用牌中拿来一张点数为这个个位数的扑克牌放进暗箱(如果个位数是0则不放),这个过程称为一次“置换”.如此下去,经过多次置换,暗箱里的扑克牌数量会越来越少,直至剩下一张.此时,魔术师非常自信地报出最后剩下的这张牌的点数,请问你能确定它的点数是几吗?为什么?10.如图所示,是一块上、下两面边长为28厘米的正方形蛋糕,其上表面和四周表面分别均匀覆盖着两种不同的糖霜,其厚度相同.如果用刀将其平均切分成7块体积相等,且覆盖有等量两种糖霜的小蛋糕,那么该怎样切?请在给出的平面图(下图右)上画出你的切割示意图,并做简要说明分割的理由.811.在棋盘上滚动骰子,使骰子的一面和棋盘格的大小相等,然后将骰子以棱为轴,滚动到邻近的棋盘格,每滚动一次,骰子朝上一面的数字就会变化.如果骰子的初始位置如左图,当骰子滚动六次到达对角顶点时(如右图),那么,第一步、第四步、第六步朝上的面分别是几点?(说明:骰子的相对两个面的点数之和为7)12.钢筋原材料每根长10米,每套钢筋架子用长2.4米、2米和1.5米的钢筋各一段.现需要绑好钢筋架子20套,至少要用去原材料多少根?总共浪费多少米?请填写下表以确定你的切割方案.原料序号钢筋段数1234567891011121314总1.5米2米2.4米92014深圳市第5届“启智杯”数学思维竞赛题(A组)1.观察如下几个等式:(1)331;(2)57313;(3)79113135;……你发现了什么规律?请据此写出第100个式子.2.有一个2014位数,其从左到右第2、3位数字分别为2、3,第11、30、2014位数字分别为4、5、6.如果其任何相邻的五位数字之和全相等,请问该数的第一位数字是几?全部2014位数字之和是多少?写出结果,并写出分析过程.3.一个非零自然数,如果从左到右顺读和从右到左逆读,都是一样的,则这个数称为“对称数”,如4,55,171,4994,12321等都是对称数,而332不是对称数.那么全部非零自然数(从1开始)从小到大的第2014这个对称数是多少?写出结果,并写出分析过程.4.把一张纸片裁剪成8份,称第1次操作;取其中一张再把它裁剪成8份,称第2次操作;如此继续下去,……,能否经过若干次操作后正好剪出了2014张纸片?若不能,请说明理由;若能,则需要经过多少次操作?写出结果,并写出分析过程.105.有如下三组数:A组:13,16,110,115;B组:1,3,5,7,9;C组:0.7,1.4,2.1,2.8,3.5,4.2,4.9.从每一组中各取一个数,相乘得到一个乘积,求这140个乘积的总和是多少?写出过程和结果.6.如图所示,五个圆中有部分的圆彼此相切(两个圆有且只有唯一一个公共点称两个圆相切),且总共只有三种不同长度的直径.若图中阴影部分的面积和为72cm,求最大圆内空白处的总面积.7.如图所示,正方形ABCD和正方形BEFG边长分别为a和b,25ab,若ACF△的面积是26cm,求CEF△的面积.8.通过折线的手段将一个正方形的每边两等分(对折)、四等分(再对折)、八等分(再对折)等等,都是轻而易举的(如图,虚线为折痕).请问,你能否在正方形的每边四等分、八等分的基础上,通过折线将其每边三等分、七等分?能否五等分呢?若能,请在图中用虚线画出你的折痕(用字母标出折痕经过的点);若不能,请说明理由.119.请将1,2,3,4,…11,12共12个数填入下列“井”字图形的12个○内,要求:(1)每个数都用一次;(2)每个“口”字四个解上(如ABCD四个位置)四个数之和都相等,四条直线上(如ACFG四个位置)四个数之和也相等,且等于各个“口”字四个角上四个数之和.10.明明的QQ号是由五个不同的数字组成的五位数,他把号码口头告诉了A、B、C三位同学.可惜他们都没有记住.A记的是“23865”,B记的是“32856”,C记的是“56328”.如果ABC三人每个人记的五位数中,位置和数字均正确的都只有两位,而且位置不相邻,请问明明的QQ号是多少?写出结果,并写出分析过程.11.张老师、王老师、李老师三人的年龄为三个连续的自然数,其中张老师28岁,他们三人分别教数学、语文和英语.已经知道:(1)李老师比英语教师年龄大;(2)张老师和语文教师不同岁;(3)语文教师比王老师年龄小.请判断一下,数学、语文、英语教师分别是谁?他们的年龄各为多大?写出结果,并写出分析过程.12.某疗养院有100个床位,床号为1、2、3、…、100,依次分布在三种不同类型的病房内:单人房、双人房、三人房(每种类型至少有1间,前几间是单人房,接下来几间是双人房,最后几间为三人房).(1)最少有多少间房?(2)最多有多少间房?(3)如果其中有13个单人房,并且52、53号床在同一个房间,58、59号床不在同一个房间,问这里共有多少个房间?写出结果,并写出分析过程.122013深圳市第4届“启智杯”数学思维竞赛题(A组)1.在下面的算式中,不同的汉字代表1—9中不同的数字,那么,“为了一切学生”的各字分别代表了什么数字?写出一种答案,说明你的分析过程.987654为了一切学生一切为了学生为了学生一切2.从1、2、3、4、5、6、7、8、9这9个数字中选出8个不同的数字分别填入下面两个算式的方框内(每个数字只许用一次),使它们都成立,简述理由.3.在如图所示的33的方格中,不同的汉字代表不同的数,每行、每列和两条对角线上各数的和相等.则每一行各数之和是