高中数学平面向量知识点总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高中数学必修4之平面向量知识点归纳新疆王新敞特级教师源头学子小屋@126.comwxckt@126.com源头学子小屋特级教师王新敞新疆一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆④平行向量(共线向量):方向相同或相反的非零向量新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆⑤相等向量:长度相等且方向相同的向量新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆2、向量加法:设,ABaBCb,则a+b=ABBC=AC新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆(1)aaa00;(2)向量加法满足交换律与结合律;ABBCCDPQQRAR,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆②向量减法:向量a加上b的相反向量叫做a与b的差,③作图法:ba可以表示为从b的终点指向a的终点的向量(a、b有共同起点)新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆4、实数与向量的积:实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)aa;(Ⅱ)当0时,λa的方向与a的方向相同;当0时,λa的方向与a的方向相反;当0时,0a,方向是任意的新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆5、两个向量共线定理:向量b与非零向量a共线有且只有一个实数,使得b=a新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆6、平面向量的基本定理:如果21,ee是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,使:2211eea,其中不共线的向量21,ee叫做表示这一平面内所有向量的一组基底新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆二.平面向量的坐标表示1新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆平面向量的坐标表示:平面内的任一向量a可表示成axiyj,记作a=(x,y)。2新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆平面向量的坐标运算:(1)若1122,,,axybxy,则1212,abxxyy(2)若2211,,,yxByxA,则2121,ABxxyy(3)若a=(x,y),则a=(x,y)(4)若1122,,,axybxy,则1221//0abxyxy(5)若1122,,,axybxy,则1212abxxyy若ab,则02121yyxx三.平面向量的数量积1新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆两个向量的数量积:已知两个非零向量a与b,它们的夹角为,则a·b=︱a︱·︱b︱cos叫做a与b的数量积(或内积)新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆规定00a新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆2新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆向量的投影:︱b︱cos=||aba∈R,称为向量b在a方向上的投影新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆投影的绝对值称为射影新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆3新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆数量积的几何意义:a·b等于a的长度与b在a方向上的投影的乘积新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆4新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆向量的模与平方的关系:22||aaaa新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆5新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆乘法公式成立:2222abababab;2222abaabb222aabb6新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆平面向量数量积的运算律:①交换律成立:abba②对实数的结合律成立:abababR③分配律成立:abcacbccab特别注意:(1)结合律不成立:abcabc;(2)消去律不成立abac不能得到bc(3)ab=0不能得到a=0或b=0新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆7新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆两个向量的数量积的坐标运算:已知两个向量1122(,),(,)axybxy,则a·b=1212xxyy新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆8新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆向量的夹角:已知两个非零向量a与b,作OA=a,OB=b,则∠AOB=(001800)叫做向量a与b的夹角新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆cos=cos,ababab=222221212121yxyxyyxx新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆当且仅当两个非零向量a与b同方向时,θ=00,当且仅当a与b反方向时θ=1800,同时0与其它任何非零向量之间不谈

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功