十种二次函数解析式求解方法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

十种二次函数解析式求解方法〈一〉三点式。1,已知抛物线y=ax2+bx+c经过A(3,0),B(32,0),C(0,-3)三点,求抛物线的解析式。2,已知抛物线y=a(x-1)2+4,经过点A(2,3),求抛物线的解析式。〈二〉顶点式。1,已知抛物线y=x2-2ax+a2+b顶点为A(2,1),求抛物线的解析式。2,已知抛物线y=4(x+a)2-2a的顶点为(3,1),求抛物线的解析式。〈三〉交点式。1,已知抛物线与x轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。2,已知抛物线线与x轴两个交点(4,0),(1,0)求抛物线y=21a(x-2a)(x-b)的解析式。〈四〉定点式。1,在直角坐标系中,不论a取何值,抛物线2225212axaxy经过x轴上一定点Q,直线2)2(xay经过点Q,求抛物线的解析式。2,抛物线y=x2+(2m-1)x-2m与x轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。3,抛物线y=ax2+ax-2过直线y=mx-2m+2上的定点A,求抛物线的解析式。〈五〉平移式。1,把抛物线y=-2x2向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a(x-h)2+k,求此抛物线解析式。2,抛物线32xxy向上平移,使抛物线经过点C(0,2),求抛物线的解析式.〈六〉距离式。1,抛物线y=ax2+4ax+1(a﹥0)与x轴的两个交点间的距离为2,求抛物线的解析式。2,已知抛物线y=mx2+3mx-4m(m﹥0)与x轴交于A、B两点,与轴交于C点,且AB=BC,求此抛物线的解析式。〈七〉对称轴式。1、抛物线y=x2-2x+(m2-4m+4)与x轴有两个交点,这两点间的距离等于抛物线顶点到y轴距离的2倍,求抛物线的解析式。2、已知抛物线y=-x2+ax+4,交x轴于A,B(点A在点B左边)两点,交y轴于点C,且OB-OA=43OC,求此抛物线的解析式。〈八〉对称式。1,平行四边形ABCD对角线AC在x轴上,且A(-10,0),AC=16,D(2,6)。AD交y轴于E,将三角形ABC沿x轴折叠,点B到B1的位置,求经过A,B,E三点的抛物线的解析式。2,求与抛物线y=x2+4x+3关于y轴(或x轴)对称的抛物线的解析式。〈九〉切点式。1,已知直线y=ax-a2(a≠0)与抛物线y=mx2有唯一公共点,求抛物线的解析式。2,直线y=x+a与抛物线y=ax2+k的唯一公共点A(2,1),求抛物线的解析式。〈十〉判别式式。1、已知关于X的一元二次方程(m+1)x2+2(m+1)x+2=0有两个相等的实数根,求抛物线y=-x2+(m+1)x+3解析式。2、已知抛物线y=(a+2)x2-(a+1)x+2a的顶点在x轴上,求抛物线的解析式。3、已知抛物线y=(m+1)x2+(m+2)x+1与x轴有唯一公共点,求抛物线的解析式。

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功