通信原理实验PAMPCM编译码器系统

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

通信原理实验报告一11/3/2013实验一PAM编译码器系统一、实验原理和电路说明抽样定理在通信系统、信息传输理论方面占有十分重要的地位。抽样过程是模拟信号数字化的第一步,抽样性能的优劣关系到通信设备整个系统的性能指标。利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。抽样定理指出,一个频带受限信号m(t),如果它的最高频率为fh,则可以唯一地由频率等于或大于2fh的样值序列所决定。在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。并且,从抽样信号中可以无失真地恢复出原始信号。通常将语音信号通过一个3400Hz低通滤波器(或通过一个300~3400Hz的带通滤波器),限制语音信号的最高频率为3400Hz,这样可以用频率大于或等于6800Hz的样值序列来表示。语音信号的频谱和语音信号抽样频谱见图4.1.1和图4.1.2所示。从语音信号抽样频谱图可知,用截止频率为fh的理想低通滤波器可以无失真地恢复原始信号m(t)。fm(t)fh0图4.1.1语音信号频谱fm(t)fh02fs+fhfs+fhfs2fs理想低通滤波器图4.1.2语音信号的抽样频谱fMfh02fs+fhfs+fhfs2fs图4.1.4fs<2fh时语音信号的抽样频谱fMfh02fs+fhfs+fhfs2fs实际低通滤波器图4.1.3留出防卫带的语音信号的抽样频谱实际上,设计实现的滤波器特性不可能是理想的,对限制最高频率为3400Hz的语音信号,通常采用8KHz抽样频率。这样可以留出一定的防卫带(1200Hz),参见图4.1.3所示。当抽样频率fs低于2倍语音信号的最高频率fh,就会出现频谱混迭现象,产生混迭噪声,影响恢复出的话音质量,原理参见图4.1.4所示。在抽样定理实验中,采用标准的8KHz抽样频率,并用函数信号发生器产生一个频率为fh的信号来代替实际语音信号。通过改变函数信号发生器的频率fh,观察抽样序列和低通滤波器的输出信号,检验抽样定理的正确性。抽样定理实验各点波形见图4.1.5所示。低通滤波器抽样脉冲低通滤波器抽样保持8KHz输入信号图4.1.5抽样定理实验原理框图图4.1.6是通信原理综合实验系统所设计的抽样定理实验电路组成框图。低通滤波器抽样脉冲低通滤波器抽样/保持外部测试信号TP701TP702TP703TP704跳线器电话1接口KQ02跳线器开关K702K701图4.1.6抽样定理实验电路组成框图U701A、BU703U702A、CUQ01交换模块内跳线器内部测试信号KQ01NTFNFNNHK701电路原理描述:输入信号首先经过信号选择跳线开关K701,当K701设置在N位置时(左端),输入信号来自电话接口1模块的发送话音信号;当K701设置在T位置时(右端),输入信号来自测试信号。测试信号可以选择外部测试信号或内部测试信号,当设置在交换模块内的跳线开关KQ01设置在1_2位置(左端)时,选择内部1KHz测试信号;当设置在2_3位置(右端)时选择外部测试信号,测试信号从J005模拟测试端口输入。抽样定理实验采用外部测试信号输入。运放U701A、U701B(TL084)和周边阻容器件组成一个3dB带宽为3400Hz的低通滤波器,用于限制最高的语音信号频率。信号经运放U701C缓冲输出,送到U703(CD4066)模拟开关。模拟开关U703(CD4066)通过抽样时钟完成对信号的抽样,形成抽样序列信号。信号经运放U702B(TL084)缓冲输出。运放U702A、U702C(TL084)和周边阻容器件组成一个3dB带宽为3400Hz的低通滤波器,用来恢复原始信号。跳线开关K702用于选择输入滤波器,当K702设置在F位置时(左端),送入到抽样电路的信号经过3400Hz的低通滤波器;当K702设置在NF位置时(右端),信号不经过抗混迭滤波器直接送到抽样电路,其目的是为了观测混迭现象。设置在交换模块内的跳线开关KQ02为抽样脉冲选择开关:设置在H位置为平顶抽样(左端),平顶抽样是通过采样保持电容来实现的,且τ=Ts;设置在NH为自然抽样(右端),为便于恢复出的信号观测,此抽样脉冲略宽,只是近似自然抽样。平顶抽样有利于解调后提高输出信号的电平,但却会引入信号频谱失真2/)2/(Sin,τ为抽样脉冲宽度。通常在实际设备里,收端必须采用频率响应为)2/(2/Sin的滤波器来进行频谱校准,抵消失真。这种频谱失真称为孔径失真。该电路模块各测试点安排如下:1、TP701:输入模拟信号2、TP702:经滤波器输出的模拟信号3、TP703:抽样序列4、TP704:恢复模拟信号二、实验仪器1、JH5001通信原理综合实验系统一台2、20MHz双踪示波器一台3、函数信号发生器一台三、实验目的1、验证抽样定理2、观察了解PAM信号形成的过程3、了解混迭效应形成的原因四、实验内容准备工作:将交换模块内的抽样时钟模式开关KQ02设置在NH位置(右端),将测试信号选择开关KQ01设置在外部测试信号输入2_3位置(右端)。1.近似自然抽样脉冲序列测量(1)首先将输入信号选择开关K701设置在T(测试状态)位置,将低通滤波器选择开关K702设置在F(滤波位置),为便于观测,调整函数信号发生器正弦波输出频率为200~1000Hz、输出电平为2Vp-p的测试信号送入信号测试端口J005和J006(地)。(2)用示波器同时观测正弦波输入信号(J005)和抽样脉冲序列信号(TP703),观测时以TP703做同步。调整示波器同步电平和微调调整函数信号发生器输出频率,使抽样序列与输入测试信号基本同步。测量抽样脉冲序列信号与正弦波输入信号的对应关系。2.重建信号观测TP704为重建信号输出测试点。保持测试信号不变,用示波器同时观测重建信号输出测试点和正弦波输入信号,观测时以J005输入信号做同步。3.平顶抽样脉冲序列测量将交换模块内的抽样时钟模式开关KQ02设置在H位置(左端)。方法同1测量,请同学自拟测量方案。记录测量波形,与自然抽样测量结果做比较。4.平顶抽样重建信号观测将交换模块内的抽样时钟模式开关KQ02设置在H位置(左端)。方法同2测量,请同学自拟测量方案。记录测量波形,与自然抽样测量结果对比分析平顶抽样的测试结果。5.信号混迭观测(1)当输入信号频率高于4KHz(1/2抽样频率)时,重建信号将出现混迭效应。观测时,将跳线开关K702设置在NF(无输入滤波器)位置。调整函数信号发生器正弦波输出频率为6KHz~7KHz左右、电平为2Vp-p的测试信号送入信号测试端口J005和J006(地)。(2)用示波器观测重建信号输出波形。缓慢变化测试信号输出频率,注意观察输入信号与重建信号波形的变化是否对应一致。分析解释测量结果。五、实验报告1、整理实验数据,画出测试波形。2、当fs>2fh和fs<2fh时,低通滤波器输出的波形是什么?总结一般规律。六、实验结果1.近似自然抽样脉冲序列测量2.重建信号观测3.平顶抽样脉冲序列测量4.平顶抽样重建信号观测5.平顶抽样重建信号观测实验二PCM编译码器系统一、实验原理和电路说明PCM编译码模块将来自用户接口模块的模拟信号进行PCM编译码,该模块采用MC145540集成电路完成PCM编译码功能。该器件具有多种工作模式和功能,工作前通过显示控制模块将其配置成直接PCM模式(直接将PCM码进行打包传输),使其具有以下功能:1、对来自接口模块发支路的模拟信号进行PCM编码输出。2、将输入的PCM码字进行译码(即通话对方的PCM码字),并将译码之后的模拟信号送入用户接口模块。在通信原理实验平台中,有二套完全一致的PCM编译码模块,这二个模块与相应的电话用户接口模块相连。本教程仅以第一路PCM编译码原理进行说明,另一个模块原理与第一路模块相同,不再重述。PCM编译码器模块电路与ADPCM编译码器模块电路完全一样,由语音编译码集成电路U502(MC145540)、运放U501(TL082)、晶振U503(20.48MHz)及相应的跳线开关、电位器组成。电路工作原理如下:PCM编译码模块中,由收、发两个支路组成,在发送支路上发送信号经U501A运放后放大后,送入U502的2脚进行PCM编码。编码输出时钟为BCLK(256KHz),编码数据从U502的20脚输出(DT_ADPCM1),FSX为编码抽样时钟(8KHz)。编码之后的数据结果送入后续数据复接模块进行处理,或直接送到对方PCM译码单元。在接收支路中,收数据是来自解数据复接模块的信号(DT_ADPCM_MUX),或是直接来自对方PCM编码单元信号(DT_ADPCM2),在接收帧同步时钟FSX(8KHz)与接收输入时钟BCLK(256KHz)的共同作用下,将接收数据送入U502中进行PCM译码。译码之后的模拟信号经运放U501B放大缓冲输出,送到用户接口模块中。PCM编译码模块中的各跳线功能如下(测试点与ADPCM编译码模块相同):1、跳线开关K501是用于选择输入信号,当K501置于N(正常)位置时,选择来自用户接口单元的话音信号;当K501置于T(测试)位置时选择测试信号。测试信号主要用于测试PCM的编译码特性。测试信号可以选择外部测试信号或内部测试信号,当设置在交换模块内的跳线开关KQ01设置在1_2位置(左端)时,选择内部1KHz测试信号;当设置在2_3位置(右端)时选择外部测试信号,测试信号从J005模拟测试端口输入。2、跳线器K502用于设置发送通道的增益选择,当K502置于N(正常)位置时,选择系统平台缺省的增益设置;当K502置于T(调试)位置时可将通过调整电位器W501设置发通道的增益。3、跳线器K504用于设置PCM译码器的输入数据信号选择,当K504置于MUX(左)时处于正常状态,解码数据来自解数据复接模块的信号;当K504置于ADPCM2(中)时处于正常状态,解码数据来自对方PCM编码单元信号;当K504置于LOOP(右)时PCM单元将处于自环状态。4、跳线器K503用于设置接收通道增益选择,当K503置于N(正常)时,选择系统平台缺省的增益设置;当K503置于T(调试)时将通过调整电位器W502设置收通道的增益。该单元的电路框图见图4.2.1。二个模块电路完全相同。在该模块中,各测试点的定义如下:1、TP501:发送模拟信号测试点2、TP502:PCM发送码字3、TP503:PCM编码器输入/输出时钟4、TP504:PCM编码抽样时钟5、TP505:PCM接收码字6、TP506:接收模拟信号测试点收PCM码字U502PCM编译码器发PCM码字至用户接口8KHz同步256KHz时钟图4.2.1PCM模块电路组成框图跳线器K501测试信号至用户接口TP504TP505TP506TP502TP501TP503跳线器LOOPADPCM2MUXK504-+K502TN······-+K503TN······NT二、实验仪器1、JH5001通信原理综合实验系统一台2、20MHz双踪示波器一台3、函数信号发生器一台4、音频信道传输损伤测试仪一台三、实验目的1、了解语音编码的工作原理,验证PCM编译码原理;2、熟悉PCM抽样时钟、编码数据和输入/输出时钟之间的关系;3、了解PCM专用大规模集成电路的工作原理和应用;4、熟悉语音数字化技术的主要指标及测量方法;四、实验内容加电后,通过菜单选择“PCM”编码方式。此时,系统将U502设置为PCM模式。(一)PCM编码器1.输出时钟和帧同步时隙信号观测用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。2.抽样时钟信号与PCM编码数据测量将跳线开关K501设置在T位置,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功