高三一轮复习资料递推数列题型归纳解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高三一轮复习资料递推数列题型归纳解析各种数列问题在很多情形下,就是对数列通项公式的求解。特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。本文总结出几种求解数列通项公式的方法,希望能对大家有帮助。类型1)(1nfaann解法:把原递推公式转化为)(1nfaann,利用累加法求解。例:已知数列na满足211a,nnaann211,求na。解:由条件知:111)1(1121nnnnnnaann分别令)1(,,3,2,1nn,代入上式得)1(n个等式累加之,即)()()()(1342312nnaaaaaaaa)111()4131()3121()211(nn所以naan111211a,nnan1231121类型2nnanfa)(1解法:把原递推公式转化为)(1nfaann,利用累乘法求解。例:已知数列na满足321a,nnanna11,求na。解:由条件知11nnaann,分别令)1(,,3,2,1nn,代入上式得)1(n个等式累乘之,即1342312nnaaaaaaaann1433221naan11又321a,nan32类型3qpaann1(其中p,q均为常数,)0)1((ppq)。例:已知数列na中,11a,321nnaa,求na.解法一(归纳法):2123232233223233nnnnaaaa123112232323323nnnna解法二(待定系数法):设递推公式321nnaa可以转化为)(21tatann即321ttaann.故递推公式为)3(231nnaa,令3nnab,则4311ab,且23311nnnnaabb.所以nb是以41b为首项,2为公比的等比数列,则11224nnnb,所以321nna.11111211111:23232,222323nnnnnnnnnnnnnnnnnaaaaaaaaaaaaaaaaa解法三作差法两式相减,得:是以=4为首项为公比的等比数列解法四(作商法):1111323222nnnnnnnaaaa令11322nnnnnnabbb则累加得:132232nnnnb则a类型4nnnqpaa1(其中p,q均为常数,)0)1)(1((qppq)。(或1nnnaparq,其中p,q,r均为常数)。解法:一般地,要先在原递推公式两边同除以1nq,得:qqaqpqannnn111引入辅助数列nb(其中nnnqab),得:qbqpbnn11再同类型3求解。例:已知数列na中,651a,11)21(31nnnaa,求na。解:在11)21(31nnnaa两边乘以12n得:1)2(32211nnnnaa令nnnab2,则1321nnbb,解之得:nnb)32(23所以nnnnnba)31(2)21(32类型5banpaann1)001(,a、p解法:这种类型一般利用待定系数法构造等比数列,即令)()1(1yxnapynxann,与已知递推式比较,解出yx,,从而转化为yxnan是公比为p的等比数列。例:设数列na:)2(,123,411nnaaann,求na.解:设BAnbaB,Anabnnnn则,将1,nnaa代入递推式,得12)1(31nBnAbBAnbnn)133()23(31ABnAbn13323ABBAA11BA1nabnn取…(1)则13nnbb,又61b,故nnnb32361代入(1)得132nann说明:(1)若)(nf为n的二次式,则可设CBnAnabnn2;(2)本题也可由1231naann,1)1(2321naann(3n)两式相减得2)(3211nnnnaaaa转化为nnnqbpbb12求之.类型6递推公式为nS与na的关系式。(或()nnSfa)解法:这种类型一般利用)2()1(11nSSnSannn与)()(11nnnnnafafSSa消去nS)2(n或与)(1nnnSSfS)2(n消去na进行求解。例:已知数列na前n项和2214nnnaS.(1)求1na与na的关系;(2)求通项公式na.解:(1)由2214nnnaS得:111214nnnaS于是)2121()(1211nnnnnnaaSS所以11121nnnnaaannnaa21211.(2)应用类型4(nnnqpaa1(其中p,q均为常数,)0)1)(1((qppq))的方法,上式两边同乘以12n得:22211nnnnaa由1214121111aaSa.于是数列nna2是以2为首项,2为公差的等差数列,所以nnann2)1(22212nnna类型7递推公式为nnnqapaa12(其中p,q均为常数)。解法一(待定系数法):先把原递推公式转化为)(112nnnnsaatsaa其中s,t满足qstpts解法二(特征根法):对于由递推公式nnnqapaa12,21,aa给出的数列na,方程02qpxx,叫做数列na的特征方程。若21,xx是特征方程的两个根,当21xx时,数列na的通项为1211nnnBxAxa,其中A,B由21,aa决定(即把2121,,,xxaa和2,1n,代入1211nnnBxAxa,得到关于A、B的方程组);当21xx时,数列na的通项为11)(nnxBnAa,其中A,B由21,aa决定(即把2121,,,xxaa和2,1n,代入11)(nnxBnAa,得到关于A、B的方程组)。例:已知数列na中,),0(025312Nnnaaannn,baaa21,,求数列na的通项公式。解法一(待定系数——迭加法):由025312nnnaaa,得)(32112nnnnaaaa,且abaa12。则数列nnaa1是以ab为首项,32为公比的等比数列,于是11)32)((nnnabaa。把nn,,3,2,1代入,得abaa12,)32()(23abaa,234)32()(abaa,21)32)((nnnabaa。把以上各式相加,得])32()32(321)[(21nnabaa)(321)32(11abn。abbaaabannn23)32)((3)]()32(33[11。解法二(特征根法):数列na:),0(025312Nnnaaannn,baaa21,的特征方程是:02532xx。32,121xx,1211nnnBxAxa1)32(nBA。又由baaa21,,于是)(32332baBabABAbBAa故1)32)((323nnbaaba类型8rnnpaa1)0,0(nap解法:这种类型一般是等式两边取对数后转化为qpaann1,再利用待定系数法求解。例:已知数列{na}中,2111,1nnaaaa)0(a,求数列.的通项公式na解:由211nnaaa两边取对数得aaann1lglg2lg1,令nnablg,则abbnn1lg21,再利用待定系数法解得:12)1(nnaaa。类型9)()()(1nhanganfannn解法:这种类型一般是等式两边取倒数后换元转化为qpaann1。例:已知数列{an}满足:1,13111aaaannn,求数列{an}的通项公式。解:取倒数:11113131nnnnaaaana1是等差数列,3)1(111naan3)1(1n231nan

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功