五年级奥数-一半模型-学生版-1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

五年级奥数-一半模型-寒假班-第1次课1一、三角形当中的一半模型由于三角形的面积公式S=底×高÷2,决定于底和高的长度,所以我们有了等高模型和等底模型。在等高模型中,(图1)当BD=CD时,阴影部分,SΔABD=SΔABC÷2特别地如图2,当BE=ED,DF=FC,阴影部分面积,SΔAEF=SΔABC÷2在等底模型中(图3),当AE=DE时,阴影部分,SΔEBC=SΔABC÷2二、平行四边形中的一半模型由于三角形的面积公式S=底×高÷2,平行四边行的面积公式S=底×高所以与平行四边形同底等高的三角形是它面积的一半!同时,长方形是特殊的平行四边行,再根据平行线间的等积变形,可以得到如下诸图,阴影部分面积是四边形面积的一半:知识结构一半模型五年级奥数-一半模型-寒假班-第1次课2【巩固练习】判断下面的图形中阴影部分的面积是不是整个图形面积的一半。是打“√”,不是打“×”。()()()()()()三、梯形中的一半模型在梯形中,当三角形的底边是梯形的一个腰,顶点在另一个腰的中点处,那么三角形是梯形面积的一半。如图4,在梯形ABCD中,BE=CE,则SΔADE=SABCD÷2如图5,是它的变形,注意其中AF=DF,BE=CE。五年级奥数-一半模型-寒假班-第1次课3四、任意四边形中的一半模型如图6,在四边形ABCD中,AE=EB,DF=CF,则SEBFD=SABCD÷2【能力提升】【巩固练习】五年级奥数-一半模型-寒假班-第1次课4【例1】如图,已知长方形ABCD的面积为24平方厘米,且线段EF,GH把它分成四个小长方形,求阴影部分的面积。【巩固】已知大长方形的长是6厘米,宽是4厘米,求阴影部分的面积。【例2】如图所示,平行四边形的面积是50平方厘米,阴影部分面积是()平方厘米.【例3】如图,长方形AFEB和长方形FDCE拼成了长方形ABCD,长方形ABCD的长是20,宽是12,则它内部阴影部分的面积是多少?例题精讲46五年级奥数-一半模型-寒假班-第1次课5ABFEDC【巩固】如图,正方形ABCD的边长为4,矩形EDFG的边EF过A点,G点在BC上,若DG=5,则矩形EDGF的宽DE=_____;EADFBCG【巩固】如图所示,正方形ABCD的边长为8厘米,长方形EBGF的长BG为10厘米,那么长方形的宽为几厘米?EABFDGC【例4】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是多少AD3549E13BC【巩固】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是11,32,57.那么图中阴影部分的面积是多少?五年级奥数-一半模型-第1次课Page6of7AD325711BC【例5】如图所示,长方形ABCD内的阴影面积之和为65,AB=8,AD=15,四边形EFGD的面积是?【思考题】提示:构造一半模型(很多时候,需要我们构造一半模型来解决一些问题。)【巩固】如图,已知正方形ABCD面积为50,求长方形DEFG面积。五年级奥数-一半模型-第1次课Page7of7【例6】如图8,已知长方形ABCD面积是50,梯形ABFE的腰上ED=DF,求梯形ABFE的面积。【巩固】如图9,长方形ABCD中,SΔEGH=5,SΔIBC=20,SΔIFG=8,求阴影部分面积。【例7】【例8】如图所示,正方形ABCD的边长是10厘米,BO长8厘米,求AE的长?

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功