高压大容量变频器在电厂节能改造中的应用姓名:王宏伟专业:电气工程2007年5月12新乡豫新发电有限责任公司摘要在火力发电企业中目前存在着大功率辅机电动机耗电高和时有烧毁电动机的问题,采用变频技术,即可实现节能降耗,又可实现高压电机的软启动,达到改善电动机运行环境的目的。本文从阐述高压变频器的原理出发,在分析研究国内外高压变频技术在火力发电行业应用现状的技术上,结合豫新发电有限责任公司的实际,确定了豫新发电有限责任公司#6炉A、B引风机变频技术的实现方式,并对变频器的性能和节能效果进行了全面分析研究,证明了高压变频技术在火力发电企业的大功率辅机电动机应用上,可以有效的降低能耗,在发电企业中有实际应用推广价值。1目录中文摘要第一章绪论……………………………………………………………………11.1课题的来源及研究的目的和意义…………………………………………31.2变频调速技术的优越性…………………………………………………31.3与本课题有关的国内研究状况…………………………………………41.3.1火力发电厂电动机的节能方式………………………………………41.3.2变频器中电力电子元器件的发展……………………………………61.3.3变流电路与控制技术的发展…………………………………………61.3.4变频技术在电动机中的应用情况……………………………………71.4本文的主要工作……………………………………………………………8第二章火力发电厂高压电动机变频方案选择…………………………………92.1变频调速的基本理论…………………………………………………………92.2变频器的基本组成………………………………………………………102.2.1变频器系统硬件组成………………………………………………102.2.2变频器系统软件组成…………………………………………112.2.3实施变频调速存在的主要问题……………………………122.3目前比较流行的几种变频调速方式……………………………………122.3.1Y/Δ变换……………………………………………………122.3.2高-低-高变频调速系统………………………………………122.3.3直接高压变频调速控制系统…………………………………132.4豫新发电有限责任公司变频调速方式的选择………………………142.4.1改造前状况………………………………………………………142.4.2高-高变频配置方案…………………………………………15第三章火力发电厂变频器的技术类型论证………………………………163.1高次谐波产生的原因极其影响………………………………………………163.1.1高次谐波的产生…………………………………………………………163.1.2高次谐波对电气设备的影响…………………………………………163.2几种常见的高压变频类型…………………………………………………173.2.1电流源型变频器………………………………………………………173.2.2三电平PWM电压源型变频器…………………………………………1823.2.3单元串联多电平PWM电压源型变频器……………………………193.3新乡豫新发电有限责任公司#6炉送风机变频技术类型论………………20第四章豫新发电有限责任公司高压变频器简述……………244.1豫新发电有限责任公司完美无谐波高压变频器的原理………………244.2豫新发电有限责任公司完美无谐波高压变频器的参数………………264.3豫新发电有限责任公司完美无谐波高压变频器的特点………………26第五章变频器节能分析…………………………………………………………285.1变频器节能分析………………………………………………………………285.1.1理论计算…………………………………………………………………285.1.2实测数据分析……………………………………………………………31第六章结论……………………………………………………………………………323第一章绪论1.1课题的来源及研究的目的和意义随着电力行业的改革不断深化,厂网分家、竞价上网政策的逐步实施,降低厂用电率,降低发电成本,提高上网电能的竞争力,已成为各火电厂努力追求的经济目标,而且要求越来越迫切,因此发电厂较以前更加重视以经济效益为中心、追求经济效益最大化的经营方针,加强节能管理,加大节能力度,挖掘节能潜力,改造落后高耗能设备、降低煤耗,提高经济效益将是今后相当长时间内的重点工作,特别是某些老机组,只能走节能降耗的路子,加大设备技术改造,才能提高机组竟价上网的能力。新乡豫新发电有限责任2×300MW机组原设计中大部分泵与风机是由工频定速电机拖动,在运行中通过改变阀门(挡板)开度的方法进行调节。这些重要的辅机都是根据机组的额定容量而设计制造的,辅机只有在额定工况下才能在高效区运行,然而在实际运行中我厂的负荷率只有60%~80%,在这样的情况下辅机的工作区域往往都偏离其高效工作区,设备的使用效率较低,增加了厂用耗电量。另一方面,近几年电网的负荷峰谷差越来越大,频繁的调峰任务使高压电机的启停次数增加,一般高压电机启动时的启动电流为额定电流的6-8倍,电动机受到的冲击转矩很大,严重影响电动机的机械寿命,在启动过程中烧毁高压电机的现象时有发生,而采用了变频调速技术,可实现高压电机的软启动,即电机从零转数慢慢升至启动转数,从而达到改善电动机运行环境的目的。1.2变频调速技术的优越性自从三相交流电动机问世以来,由于其转子回路内的电流不必从外部输入,转子的结构极为坚固,易于维护,长期以来在工业中的占有率始终处于领先地位,然而,工业中转动机械常常需要不同的转速要求,在调速方面,三相交流电机远逊于直流电机,直流电动机调速统治了30年。从1970年以后,直流调速在单机容量上逐渐满足不了要求,又有换向火花、维修困难又不节能等缺点,使其应用受到一定制约。实现三相异步电动机的调速,成为工程技术人员追求的目标。变频调速技术的出现和不断发展,使电机调速领域发生了革命性的变化,在不到二十年的时间里,已被国内外公认为是最理想、最有发展前途的一种调速方式。变频技术在我国推广应用虽短短十几年,发展也十分迅速。这主要归功于变频调速技术的优越性。41.节约能源这是变频调速最突出的特点之一,也是变频调速技术虽然发展时间很短,但推广普及十分迅速的主要原因之一,在各种调速系统中,变频调速效率最高,可比直流电动机效率提高2%-3%,尤其对转速经常变化的泵和风机类负载,其节电率很高,采用变频调节流量可以节省电能消耗10%-30%,因此随着变频技术的不断发展,成本的不断下降,变频调速的普及将更加迅速。2.可靠性高交流电机变频调速的故障率很低,与直流调速相比,电机无换向器等易损坏环节,,其优势十分明显,且保护功能比较完善,可靠性远高于其他的调速方法,这是变频调速发展十分迅速的根本原因。3.调速范围广变频器的最低工作频率可以从零赫兹到400赫兹以上,调速范围很广,可满足不同的调速场合,应用十分广泛。4.调速平滑性好两档之间的调速最小可达零点零几转/分钟,可以大大提高生产设备的加工精度,工艺水平以及工作效率,从而提高产品质量和数量;对于一些控制系统来说,还可减小对系统的冲击,各项被控参数更加稳定,提高了可靠性及经济性,延长了设备的使用寿命。5.工作特性好在工作特性方面,无论是静态特性,还是动态特性,变频调速都做到了与直流调速系统不相上下的程度。1.3与本课题有关的国内研究状况1.3.1火力发电厂电动机的节能方式火力发电厂的动力设备较多,节能方式也多种多样。归纳起来有:1.变极调整改变定子绕组的接线方式来改变电动机定子极对数达到调速目的,这种调速方法由于从一个速度调到另一个速度时,会产生较大的冲击电流,不仅会影响电动机的使用寿命,而且对厂用电的正常运行可能造成影响。因而只适用于需要两、三种转速的鼠笼电动机。在电厂,变极调速的主要应用形式为双速电机。我厂的锅炉送风机、引风机均采用了此调速方式。2.串极调速指绕线式电机转子回路中串入可调的附加电势来改变电机的转差率,达到调速5的目的。适用于中、大功率的绕线式电动机,节电率可达30%左右。此方法在绕线式电动机中得到广泛的应用。由于其节能效果明显,近年来,火力发电厂中,也有将鼠笼电动机改为绕线式电动机,再利用此方法,达到节能的效果。我厂的锅炉磨煤机电机采用了此调速方式后,节能效果相当明显。3.转子串电阻调速在绕线式电动机转子串入附加电阻,改变电阻使电动机的转差率改变,达到调速的目的。此方法使电动机转子铜损增加,电动机效率降低,只适合于频繁启动、负载变化不大、短时低速运行的场合。目前这种调速方法在电厂已被淘汰。4.变压调速当改变电动机的定子电压时,可以得到一组不同的机械特性曲线,从而获得不同的转速。由于变压过程中转差功率以发热的形式消耗在绕组电阻中,效率低,调速功率范围≤220KW。在电厂的大型辅机中无应用的事例。5.滑差调速又称电磁调速,主要由三相鼠笼电动机和电磁转差耦合器、测速发电机三部分组成。利用可控硅整流装置调节耦合器中的励磁电流,达到调速的目的。由于在低速运转时,转差损耗很大,效率极低,仅适用于恒转矩负载、短时低速工作制的场合。只有当风机运行的风量与最大风量之比Q/Qmax小于0.6时,方能显示出经济效益,而且噪音较大,不宜在电厂推广。6.液力偶合器调速利用改变偶合器工作腔中的液体充满程度来改变转速。此方法属于机械调速,可实现无级调速,无电联接,机械结构可靠性高。我厂的#4、5机#1、2给水泵都采用了此方法,节能效果也非常明显。7.变频调速改变电动机电源频率,就能改变电动机的同步转速,电动机的转速也随之改变,所以改变电源频率就可以平滑地调节异步电动机的转速。其特点是:没有附加损耗,效率高,调速范围大,调速比可达20:1;调节精度高:技术复杂,造价高。适用于流量不稳定,变化范围较大且需要经常改变的场合,如:风机和水泵等。变频调速技术在高压电动机中的应用国内正在探索之中,2000年2月,大庆华能新华发电有限公司引进两套德国西门子生产的SIMOVERT-A6SC24系列变频器,安装在灰浆泵系统中,开创了全国电力系统高压电机变频改造的先河,也为电力系统大容量高压变频调速技术的推广应用奠定了基础。8.无刷双馈变频调速电机无刷双馈电机是一种新型的很有发展前途的交流调速方案,它但没有成熟的系列产品,没有大规模使用。61.3.2变频器中电力电子元器件的发展二十世纪八十年代,各种高速、全控型的器件先后问世,如可关断晶闸管(GTO)、电力晶体管(GTR)、功率场晶体管(功率MOS-FET)、绝缘栅双极晶体管(IGBT)、静电感应晶体管(SIT)、静电感应晶闸管(SITH)、MOS晶闸管(MCT)等[5-6]。原交流装置中的普通晶闸管逐渐被这些新型器件取代,新的结构紧凑的变流电路随之出现,许多早期的变流方式再次焕发青春,过去难以实现的控制方式也得以实现。这一切使电力电子技术具有了全新的面貌,这些现代器件具有全控化、集成化、高频化、多功能化、大功率化的特点。现代电力电子器件的出现,实现了弱电对强电的控制,使电子技术步入功率领域,其全控特性使得不仅能控制其开通,而且能控制其关断,在工业上引起了一场技术革命,变流装置也由旋转方式变为静止方式。全控型又可分为三大类:双极型、单极型和混合型。在电力系统中应用较多的为混合型器件,它是由双极型器件和单极型器件混合集成而成。它利用耐压高、电流密度大、导通压降低的双极型器件(如SCR、GTR、GTO等)作为输出级,因而兼并了两者的优点。这类器件的典型有:IGBT、MCT和功率集成电路。IGBT自上世纪八十年代以来发展十分迅速,最大容量已达3000A,最高电压等级已达10000V,工作频率已超过40KHZ。功率集成电路也称PIC,也是混合型器件,它是指功率器件与驱动电路、控制电路、保护电路等的总体集成,是更高层次的电力电子器件。功率集成电路又分为高压集成电路(HVIC)和智能功率集成电路(SPIC),这种器件实现了功率器件与电路