第三章单元系的相变习题3.2试由0vC及0)(TVp证明0pC及0)(SVp。证:由式(2.2.1)TCCVpVTppTVPCpTH=pTST;VCVTUVTSTdpdVVpTdTTpVdpdVVpSdSSpVdVVpSVSpdTTSdVVSVTTVpVSpTVS+SVp(1)VTpVSpTTS(2)由麦氏关系(2.2.3)代入(1)式中SVT-VSpTVpSVpSVTTVSSVpSVST,,TVTS,,SVpTVST,,SVTV,,TVST,,SVpSVTV,,2,,TVSTSVpVST2,,TVST由式(2.2.5)VCVTST;即0VVCTST.于是:0TVpSVp正数于是:SVp0PCPTSTpTpST,,VSpST,,pTVS,,SVpTpTVS,,SVpTVTVS,,pTVT,,SVpTVTSTpVSVpVTCpV0VC;因而0PC习题3.4求证:(1)nVT,VTnS,;(2)nTp,pTnV,证:(1)开系吉布斯自由能dnVdpSdTdG,),(TVppdndTTpdVVpVSdTdGVTdndVVPVdTTPVSnTnVVSTGnV,VTp①VVGnT,TVp②VTnG,③由式①nVnVTGTpVS,VTnS,VTnVnTG,,VnTG2VTnG2VTnS,nVT,第(1)式得证。(2)由式(3.2.6)得:pTnV,TnpG2TpnG2nTp,习题3.7试证明在相变中物质摩尔内能的变化为:dpdTTpLu1如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简。解:由式(3.2.7)得:VpSTU;又由式(3.4.6)得:VTLdTdp;STL;dpdTTpLLUdpdTTpL1习题3.8在三相点附近,固态氨的蒸气压(单位为aP)方程为:Tp375492.27ln液态氨的蒸气压方程为:Tp306338.24ln,试求氨三相点的温度和压强,氨的汽化热、升华热及在三相点的熔解热。解:(1)固态氨的饱和蒸气压方程决定了固态-气态的相平衡曲线;液态氨的饱和蒸气压方程决定了氨的液态-气态的相平衡曲线。三相点是两曲线的交点,故三相点温度3T满足方程:TT306338.24375492.27;由此方程可解出3T,计算略;(2)相变潜热可由RTLApln与前面实验公式相比较得到:3754RLS,从而求出SL;类似可求出QL;计算略;(3)在三相点,有rQSLLL,可求得rL,计算略。习题3.10试证明,相变潜热随温度的变化率为:pcdTdL-pcTLvvLTvTvpp如果相是气相,相是凝聚相,试证明上式可简化为:ppccdTdL证:显然属于一级相变;)(SSTL;其中)(,TpTSS,在p~T相平衡曲线上。dTdppSTTSTSSdTdL其中:TSPTSPTSdTdppS[PTSPTS]dTdp又有:TCPPTS;)(SSTL由麦氏关系(2.2.4):TpSPTV上几式联立(并将一级相变的克拉伯珑方程代入)得:pcdTdL-pcTLvvLTvTvpp若相是气相,相是凝聚相;V~0;pTV~0;相按理想气体处理,pV=RT,ppccdTdL习题3.11根据式(3.4.7),利用上题的结果及潜热L是温度的函数。但假设温度的变化范围不大,定压热容量可以看作常数,证明蒸汽压方程可以表为:TCTBAplnln解:蒸汽压方程:21RTLdTdpp2TLdTpdp利用ex.3.10结果。pCdLdTCLTT0;温度变化的范围不大;设常数)(CCCCpPp20TLCRLdLpdpdLTLTTLTLCRp200200)(1ln0001ln1TLTCRTLCRL+T0=T;plnKTTCRTCR01ln1习题3.12蒸汽与液相达到平衡。以dTdv表在维持两相平衡的条件下,蒸汽体积随温度的变化率。试证明蒸汽的两相平衡膨胀系数为RTLTdTdvv111。解:由式(3.4.6)克拉珀珑方程。并注意到V~0.方程近似为:TVLTp,V—气相摩尔比容。VpTLTVV11①气相作理想气体,pV=RT②TRVppV③联立①②③式,并消去△p、P得:TLTVVVPTRTLVTVVVRTTRLTVVRTTR221RTLRTTVV;RTLTRTTTVVP111112习题3.13将范氏气体在不同的温度下的等温线的极大点N与极小点J联起来,可以得到一条曲线NCJ,如图3.17所示。试证明这条曲线的方程为:)2(3bvapv并说明这条曲线分出来的三条区域ⅠⅡⅢ的含义。解:范氏气体:RTbvvap2;2vabvRTp等温线上极值点,极值点组成的曲线:322)(vabvRT;由2vapbvRT)2(3bvapv习题3.14证明半径为r的肥皂泡的内压与外压之差为r4。(略解):连续应用式(3.6.6)及(3.6.16)。习题3.16证明爱伦费斯公式:1212kkdTdp;)(1212TvccdTdppp证:对二级相变0)(dS;即2dS-1dS=00)(dV;即2dV-1dV=02dSdTTS2dppS1;1dSdTTS1dppS1)(0dS2dS-1dSdTTSTS12dppSpS12pSpSTSTSdTdp1212;将ppTSTC代入得。pSpSCCTdTdppP12121①由式(3.2.6)得:VpTpS2;结合式(3.7.2)即为:pS2121VpS;代入①得:1212TVCCdTdppP类似地,利用0)(dV可证第二式。(略)