二.计算题(每小题7分,共70分)1。设zyxxzyu的全微分du解:两边取对数zxyzxyulnlnlnln-----(1),再对(1)两边取全微分:dzzxzdxydzdyyzxdydxxyduulnlnln1.lnlnlndzzxydyyzxdxzxy所以,.lnlnlndzzxydyyzxdxzxyudu2.计算由方程yzzxln确定的函数yxzz,的全微分。解:原方程化为yzzzxlnln2----(1)(1)式两边全微分,得:ydzdyyzdzzdxlnln12,整理,得:dyyzyzdxyzdzdyyzdxdzyzlnln1lnln122lnln1)1(dz.222212122yzxyxzzdyzxyzdxzxz3.设yxzz,,由方程0,,xzzyyxF确定,且F为可微函数,求dz。解:方程两边求全微分,并注意到一阶全微分形式的不变性,有:.0/3/2/1xzdzydyxdFFF即:01112/32/22/1dzxdxzdzydyzdyxdxyxFzFyF,整理,得:dyxzdxzydzxyFyFFxFFFz/12/2/32/1/3/22111,故:.1111/3/22/12/2/3/22/32/1dyxyxzdxxyzydzFFzFyFFFzFxF4.设函数2,sin,222xxxyyxfz,其中f具有二阶连续偏导数,求.;22yzxz解:(一)xxyxfxzfffx2cos2.2/3/2/12(二)xyzffxsin/2/12,所以xxxzffffxysinsinsin//22//21//12//112225。求曲线..0,6:222zyxzyx在点1,2,1的切线。解:方程组两边关于x求导,得:..01,0222dxdzdxdydxdzzdxdyyx,----(1)将点1,2,1代入(1),得:..01,0242||||1111xxxxdxdzdxdydxdzdxdy解之,有:.1,0||11xxdxdzdxdy所以,切线向量为:1,0,1s故曲线在点1,2,1的切线为:.110211zyx6.计算,422dIDyx其中D是xyx222。解:.932384cos20222rdrdIr7.计算dxdyIyxye110解:交换积分次序,.21211211_1||1010101010001022xxdxdxdxxdxxxdyxdxIexeeeexxxxyxy三.试证明:点2,3是函数yxyxyxf2246,的极值点。(10分)解:.246,,426,2/2/yxyxyxyxxfyfyx因为,02,32,3//ffyx所以点2,3是函数yxyxyxf2246,的驻点。26,,2426,,42,2////2//xffyfxyxyxyxyyxyyxyxx。记0144,182,3,02,3,082,32//////ACBABfffyyxyxx所以,点2,3是函数yxyxyxf2246,的极大值点。四.设是由曲面yxz224和yxz22所围成的区域,试分别写出dvzyxfI,,在直角坐标;柱坐标;球面坐标系下的三次积分(14分)解:分数评卷人分数评卷人向xoy平面上的投影区域为,:D222yx。(一)在直角坐标系下.,,,,22224222222dzxxyxyxzyxfdydxdvzyxfI(二)在柱坐标下.,sin,cos,,202042dzrzrrfrdrddvzyxfIr(三)在球坐标下.cos,sinsin,cossinsin,,2043202dfdddvzyxfI五。选作题(每题10分,共40分)1.在曲面842232:222yzxzxyzyx上求点的坐标使此点处的切平面平行于yoz坐标面。解:设所求之点为zyxM0000,,记842232,,222yzxzxyzyxFzyx,则曲面在zyxM0000,,处的切平面的法向量为yxzzxyzyxMFMFMFzyxn0000000000/0/0/426,424,222,,因为0,0,1//n,所以,有:Mzyzxyxzyxyxzzxy0000000202020000000.0842232.0426,0424,解之,.0,2,4000zyx因此,所求之点0,2,40M。2.设dvzyxfI,,,其中f为连续函数,是由曲面Rzyx22224和0422222RRRzyx所围成的区域,将I化为柱坐标及球坐标下的三次积分。解:联立.4,4222222222RRzyxRzyx消去z,得向xoy平面上的投影区域为,:D.3222Ryx。(一)在柱坐标下.,sin,cos,,20304422222dzrRrRzrrfrdrddvzyxfIRR(二)在球坐标下dfdddvzyxfIR2030202cos,sinsin,cossinsin,,.cos,sinsin,cossinsin2023cos402dfddR3.求dzxyxyxdydxIz22222102210解:如图所示。宜采用球坐标计算之。.75122sin220402022cosdddI4.已知某一物体由,2,222zzyx及8z所围成且每一点处的面密度函数为yx22,试求该物体的质量。解:记:.82222zzyx由三重积分的物理意义,知:dxdydzmyx22。宜才采用直角坐标系下的“切片法”。设:Dzzyx222为过点82,0,0zz处的截面。8220202228222zrdrddxdyDdzdxdydzmryxyxz.336322|823822zzdz5.试证明.0,0,,0,0,0,,,22yxyxxyyxfyx在原点处连续且偏导数存在,但在原点处不可微。证明:(一)因为0,00|||||||,|022yxyyxyxfyx,所以,0,00,lim00fyxfyx,故函数yxf,在原点处连续。(二)因为,000lim0,00,0lim00xxfxfxx所以,;00,0/fx类似地,.00,0/fy故函数yxf,在原点处可偏导。(三)下面考察yxzffyx0,00,0lim//0,即考察yxyxyxffyxyxfyxfxyxyx2222022//00.lim0,00,00,00,0limyxyxyx2200.lim。我们说,yxyxyx2200.lim不存在,故yxf,在原点处不可微。